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ABSTRACT

Aims. Our goal here is to rigorously prove the equations of James Clerk Maxwell using line integrals and vector field rules.Maxwell’s
equations allow us to reconstruct the electric and magnetic fields from the charge and current densities. They are fundamental to the
subject of electricity and magnetism and provide a fitting tribute to the power of the theorems of Stokes and Gauss.
Methods. Our proof will utilise vector analysis, Green’s Theorem, and Gauss’s theorem to prove the equations. We shall using
established laws of physics from this proof and assume that the reader has an understanding of multi-variable calculus
Results. The First Equation was found to be the differential form of Gauss’s law is equivalent to Coulomb’s law, the second equation
states that there are no sources of magnetic field except currents; that is, there are no magnetic monopoles. The third equation expresses
the dependence of the magnetic field on the displacement current density, or rate of change of electric field, and on the conduction
current density, or rate of motion of charge. The final equation is is Faraday’s law of induction
Conclusions. The equations were proven by using the rules of line integrals, vector fields, and Gauss’s theorem.

1. Introduction

Maxwell’s Equations are defined as the following.

Gauss’s Law

∇ · E =
ρ

ǫ0

This is the differential form of Gauss’s Law
No Magnetic Monopoles

∇ · B = 0

The intuitive content of this equation is often expressed by
saying that “magnetic monopoles” do not exist.
Faraday’s Law
Michael Faraday observed empirically that the change in
magnetic flux across a surface S equals the electromotive force
around the boundary C of the surface. This relation can be
written as

∇ · E = −
δB

δt

Ampére’s law generalised

∇ · B = µ0J + µ0ǫ0
δE

δt

This is known as the displacement current density, was first
postulated by James Clerk Maxwell in order to generalised
Ampére’s law to the non-static case.
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⋆⋆ Secondary Author
⋆⋆⋆ Editor

2. Proof Of Gauss’s Law

Assume that There Exists and electrical field designated by E,
the flux of the electrical field across a closed surface S shall be
given by the below.

"
S

E · dS

We then apply Gauss’s Theorem

$
D

∇ · EdV

D being the region enclosed by S
If the electric field E is determined by a single point charge

of q coulombs (coulombs shall henceforth be designated as C)
located at the origin, then E is given by the below.

E(x) =
q

4πǫ0

x

||x||3
′

We can let x be represented by the vector
[

x y z
]

in mks

units, E is measured in volts/meter the constant ǫ0 is known
as the permittivity of free space; its value (in mks units) is

8.854 × 10−12 C2

N·m2

For the electric field equation we can readily verify that
∇ · E = 0 wherever E is defined. From the formulae given to us
by Gauss’s theorem if S is any surface that does not enclose the
origin, then the flux of E across S is zero.

But now a question arises: How do we calculate the flux of
the electric field across surfaces that do enclose the origin? The
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trick is to find an appropriate way to exclude the origin from
consideration. To that end, first suppose that S b denotes a sphere
of radius b entered at the origin. (S b = x2 + y2 + z2 = b2) Then
the outward unit normal to S b is given by

n =

[

x y z
]

b
=

x

b

we then apply the first equation.

"
S b

E · dS =
4

4πǫ0

"
S b

x

||x||3
·

x

b
dS

||x|| = b|

"
S b

E · dS =
q

4πǫ0

"
S b

x

b3
·

x

b
dS =

"
S b

||x||2

b4
dS

=
q

4πǫ0

"
S b

b2

b4
dS =

q

4πǫ0b2

"
S b

dS

q

4πǫ0b2
(4πb2) =

q

ǫ0

Now, suppose S is any surface enclosing the origin. Let S b

be a small sphere centred at the origin and contained inside S .
Let D be the solid region ∈ R3 between S b & S . Note that
∇ · E = 0 throughout D, since D doesn’t contain the origin.

If we orient the equation δD = S ∪ S b with normal vectors
that point away from D we obtain the below

"
S

E · dS −

"
S b

E · dS =

$
D

∇ · EdV = 0

∴

"
S

E · dS =
q

ǫ0
for any surface that encloses the origin.

We can then modify the equation for E and we can show
that the above holds true for any closed surface containing a
single point charge of q coulombs located anywhere. We can
adapt the arguments just given to accommodate the case of n
discrete point charges. For i = 1, . . . , n, suppose a point charge
of qi coulombs is located at position ri. The electric field E for
this configuration is below.

E(x) =
1

4πǫ0

n
∑

i=1

qi
x − r

||x − ri||
3

For E from the given equation, we can calculate that
∇ · E = 0 with the exception of x = ri if S is any closed,
piecewise smooth, outwardly-oriented surface containing the
charges, then we may use Gauss’s theorem to find the flux of E
across S by taking n small spheres S 1, S 2, . . . , S n each enclosing
a single point charge. If D is the region inside S but outside all
the spheres, we have, by choosing appropriate orientations and
using Gauss’s theorem, the below.

"
S

E · dS −

n
∑

i=1

"
S i

E · dS =

"
δD

E · dS =

$
D

∇·EdV = 0

Given that ∇ · E = 0 w.r.t. D

"
S

E · dS =

n
∑

i=1

"
S i

E · dS =
1

ǫ0

n
∑

i=1

qi =
1

ǫ0

To establish Gauss’s law, consider the case not of an electric
field determined by discrete point charges, but rather of one de-
termined by a continuous charge distribution given by a charge
density ρ(x) The total change over a region D in space is given
by

$
D

ρ(x) dV

And if we apply this to our electric field formula we get the
below.

E(r) =
1

4πǫ0

$
D

ρ(x)
r − x

||r − x||3
dV

This the integration occurs with respect to the variables
in x. This intergral used to define E(r) converges at points
r ∈ D where ρ(r) , 0, because because at such points the triple
integral is improper.

Thus the integral form of Gauss’s Law is

"
S

E · dS =
1

ǫ0

$
D

ρ dV

Given that S = δD If we apply Gauss’s theorem to the left
side of the formula, we find that.

$
D

∇ · E dV =
1

ǫ0

$
D

ρ dV

Given that D is an apbitrary region it may be shrunk to a
point, Thus we can conclude that.

∇ · E =
ρ

ǫ0

�

3. Proof that Magnetic Monopoles Do not exist

A moving charged particle generates a magnetic field. To be
specific, if a point charge of q coulombs is at position r0 and
is moving with velocity v, then the magnetic field it induces is
given below.

B(r) =

(

µ0q

4π

)(

v × (r−r0)

||(r − r0)||3

)

B is measured in teslas. The constant µ0 is known as the
permeability of free space

µ0 = 4π × 10−7 N

amp2

In the case of a magnetic field that arises from a continuous,
charged medium wire), rather than from a single moving charge,
we replace q by a suitable charge density function ρ and the
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velocity of a single particle by the velocity vector field v of the
charges. Then we define the current density field J by the below.

J(x) = ρ(x)v(x)

In place of our initial definition of B(r) we use the following
definition for the magnetic field resulting from moving charges
in a region D in space:

B(r) =
µ0

4π

$
D

ρ(x)v(x) ×
r − x

||r − x||3
dV

=
µ0

4π

$
D

J(x) ×
r − x

||r − x||3
dV

The variables constituting x it is not obvious that the integrals
are convergent if r ∈ D

Before continuing our calculations,we comment further
regarding the current density field J. The vector field J at a point
is such that its magnitude is the current per unit area at that
point, and its direction is that of the current flow. It is not hard
to see then that the total current I across an oriented surface S is
given by the flux of J; that is.

I =

"
S

J · dS

Revisiting B, we show that it can be identified as a curl of vector
field A, firstly we shall determine this by direct calculation.

∇r

(

1

||r − x||

)

= −
r − x

||r − x||3

=⇒ B(r) = −
µ0

4π

$
D

J(x) × ∇r

(

1

||r − x||

)

dV

Using the identity where f is a scalar field and F a vector field

∇ × ( f F) = (∇ × F) f − F × ∇ f

=⇒ F × ∇ f = (∇ × F) f − ∇ × ( f F)

∴ J(x)×∇r

(

1

||r − x||

)

=
(∇r × J(x))

||r − x||
−∇r×

J(x)

||r − x||
= −∇r×

J(x)

||r − x||
′

Given that J(x) is independent of r

B(r) =
µ0

4π

$
D

∇ ×
J(x)

||r − x||
dV =

µ0

4π
∇r ×

$
D

J(x)

||r − x||
dV

None of the variables of integration are contained in r

∴ B(r) = ∇ × A(r), ⇐⇒ A(r) =
µ0

4π

$
D

J(x)

||r − x||
dV

∴ ∇ · B = ∇ · (∇ × A)

From theorem 4.4 from Chapter 3 we know this.

∴ ∇ · B = 0

�

Therefore we have proven that magnetic monopoles are im-
possible.

4. Ampére’s law

4.1. Differential Form of Ampére’s law in the static case.

If C is a closed loop enclosing a current I, then Ampére’s law
says that, up to a constant, the current through the loop is equal
to the circulation of the magnetic field around C.

�
C

B · ds = µ0I

We can assume that C is oriented so that C and I are related
by a right-hand rule, that is, that they are related in the same
way that the orientation of C and the normal to any surface S
that C bounds are related in Stokes’s theorem.

As we proved in the prior section the total current can be
rewritten as below. Assuming that S is a surface bounded by C

�
C

B · ds = µ0

"
S

J · dS

Then we apply Stokes’s theorem.

"
S

∇ × B · dS = µ0

"
S

J · dS

=⇒ ∇ × B = µ0J

�

4.2. Displacement current density, Or Generalisation of
Ampére’s law

In the event that the magnetic and electric fields are time vary-
ing, we need to make some modifications. From the Equation of
continuity we know that.

∇ · J = −
δρ

δt

=⇒ ∇(∇ × B) = ∇ · (µ0J) = −µ0

δρ

δt

If we let B be of class C2 we must then have ∇ · (∇ × B) = 0 for
all caeses where ρ is not constant with respect to time. We can
then modify the differential form of Ampére’s law by adding the
extra term.
We know from Gauss’s Law that

δρ

δt
= ǫ0∇ ·

δE
δt

Then we can

substitute J with J + ǫ0
δE
δt
|∇ · (∇ × B) = 0

∴ ∇ × B = µ0J + µ0ǫ0
δE

δt

� Thus we
have proven the general form of Ampére’s law.

5. Faraday’s law

Michael Faraday observed empirically that the change in mag-
netic flux across a surface S equals the electromotive force
around the boundary C of the surface. This relation can be writ-
ten as.
We can let there exist Φ|Φ(t) =

!
S

B · dS

dΦ

dt
=

�
C

E · ds
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We can then apply our old friend Stokes’s Theorem to the line
integral and find the below.

�
c

E · ds =

"
S

∇ × E · ds

And we know that.

dΦ

dt
=

d

dt

"
S

B · dS =

"
S

δB

δt
· dS

=⇒ −

"
S

δB

δt
· dS =

"
S

∇ × E · dS

Given that this is an arbitrary surface we can conclude the below.

∴ ∇ × E = −
δB

δt

�
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