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Expressed in terms of the Christoffel symbols Γαβγ , the Riemann tensor has components

Rγαβδ =
∂

∂xδ
Γγαβ −

∂

∂xβ
Γγαδ + ΓεαβΓγδε − ΓεαδΓ

γ
βε.

The Ricci tensor is defined as Rαβ ≡ −Rγαβγ . When expressed in a basis in which the
metric tensor gαβ is diagonal, it can be written as

Rαβ =
1

2

∂2

∂xα∂xβ
ln |g| −

∂Γγαβ
∂xγ

+ ΓδαγΓγβδ −
1

2
Γγαβ

∂

∂xγ
ln |g|,

where |g| is the modulus of the determinant of gαβ.

The Einstein equation is

Rαβ −
1

2
gαβR+ Λgαβ = −8πG

c4
Tαβ,

where R ≡ gαβRαβ is the Ricci scalar, Λ is the cosmological constant and Tαβ is the
energy–momentum tensor.

For the line element

ds2 = −c2 dt2 +R2(t)

[
dr2

1− kr2
+ r2 dθ2 + r2 sin2 θ dφ2

]
the Einstein equation can be written as the pair of equations

R̈ = −4πG

3

(
ρ+

3p

c2

)
R+

1

3
Λc2R,

Ṙ2 =
8πG

3
ρR2 +

1

3
Λc2R2 − c2k,

where ρ and p are the rest-frame density and pressure, respectively.
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1. The Riemann curvature tensor can be written as:

Rλµνκ =
1

2

(
∂2gλν
∂xκ∂xµ

− ∂2gµν
∂xκ∂xλ

− ∂2gλκ
∂xν∂xµ

+
∂2gµκ
∂xν∂xλ

)
+ gησ

(
ΓηνλΓσµκ − ΓηκλΓσµν

)
.

(a) State its symmetries without proving them. [4]

(b) It obeys the Bianchi identities that are central to General Relativity, and can
be written in this form:

Rλµνκ;η +Rλµην;κ +Rλµκη;ν = 0.

What is meant by the “;” symbol? From the Bianchi identities, derive:(
Rµν − gµνR

2

)
;µ

= 0.

Clearly define all the symbols used and explain why it is useful to construct such a
tensor with vanishing divergence. [7]

(c) Consider the following form of the field equations:

Rµν − gµν
R

2
= CTµν .

Note the lowered indices. Show that this can be written as:

Rµν = CSµν

where Sµν = Tµν − gµνT/2, and C is a constant. [3]

(d) The Newtonian limit implies a non-relativistic source particle producing a
weak and static gravitational field. Write down the definition of the Ricci tensor Rµν
and specifically the R00 term. At the Newtonian limit, show that R00 = 1

2Cρc
2, where

ρ is the Newtonian mass density and c the speed of light. Write down the Riemann
tensor in the weak field limit, and then R00 specifically. Simplify R00 by assuming the
static limit, to show:

R00 =
1

2
∇2g00.

[7]

(e) Finally, define C such that Poisson’s equation for gravity is satisfied in the
Newtonian limit, taking g00 ' −(1 + 2Φ/c2). [4]
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2. (a) For a curved spacetime, show how the metric tensor gµν can be expressed
in terms of a suitable constant tensor and relations involving a set of locally inertial
coordinates ξα. [2]

(b) Write down an equation defining the covariant derivative of a vector Aλ, and
a clear explanation of its usefulness in a curved spacetime. In your definition, use and
define the Levi-Civita affine connection Γλµν , and state its symmetries. [5]

(c) Using your definitions, show explicitly that the covariant derivative of the
metric gµν vanishes. [4]

(d) Now define the metric tensor using the basis vectors ea and eb. Assuming
that the object Γbac is defined through:

∂ea
∂xc

= Γbaceb,

show that:
∂gab
∂xc

= Γdacgdb + Γdbcgad .

What does this tell you about Γbac? [4]

(e) For the 2D surface of a 3D sphere of radius R, evaluate eφ and eθ from the
transformation laws for the basis vectors, and show that the metric gij is given by:

gij = R2

(
gθθ gθφ
gφθ gφφ

)
= R2

(
1 0
0 sin2 θ

)
,

where θ and φ are defined using the standard definition of polar coordinates. [3]

(f) Parallel transport of a vector V along a curve of constant θ on the surface
of this sphere results in the components of V in θ and φ changing according to the
equation:

V a
;φ =

∂V a

∂φ
+ ΓabφV

b = 0.

Compute the non-vanishing affine connection coefficients for this surface to show that:

V θ = A cos(φ cos θ) +B sin(φ cos θ)

and

V φ = −Asin(φ cos θ)

sin θ
+B

cos(φ cos θ)

sin θ
.

If V has components (V θ, V φ) = (1, 0) at θ = π/3 and φ = 0, show that the final
components of V when parallel transported along a full circle of φ with constant θ, are
(-1,0). Comment on the magnitude of V. Why do you not expect the length of the
vector to change? [7]
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3. A point source is emitting a beam of photons that is deflected slightly by the
presence of a massive body at a large distance to the source.

(a) Using a diagram, describe the path of a single photon. Make sure to carefully
indicate the deflection angle δ and the impact parameter b. Explain clearly the reference
path with respect to which you are defining the deflection angle. [4]

(b) Assume that spacetime around this massive body follows the Schwarzschild
metric. Using a Lagrangian, show that the radial equation of motion can, in general,
be written as: (

dr

dφ

)2

+ r2B

(
1 +

c2r2

γ2∞J
2

)
=
c2r4

J2

in standard spherical coordinates, where

B = 1− 2GM

rc2
.

Explain the meaning of the constants J and γ∞. [8]

(c) Show that the path of the photon obeys

u′′ + u =
3GM

c2
u2

where u = 1/r and ′ indicates derivatives with respect to φ. Obtain the solution in the
case where the term on the right hand side is zero. Now, by expanding u as a sum of 0th
(u0) and 1st order magnitude (u1) terms in 1/c2, show that, for the first order terms,

u′′1 + u1 =
3GM

c2
(1− cos 2φ)

2b2
.

[6]

(d) The total deflection can be shown to be
4GM

bc2 , which you do not need to prove

here. A luminous astrophysical point source at a distance D emits light isotropically.
For an observer on Earth this source lies on the extended line of sight to a black hole
of mass M which is located much nearer to Earth at distance L < D. Describe the
resultant image of the point source on the sky. Show that the angular size 2θ of the
image is given by the equation: [7]

2θ = 2

√
4GM

c2
(D − L)

LD
.
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4. (a) Assume that the distance to the Moon is 4 × 105 km. If the Earth and the
Moon independently drifted with the Hubble flow, then by what velocity would the
Moon be receding? Express your answer in cm per year. [3]

(b) The actual recession velocity of the Moon is measured to be 3.8 cm per year.
Should modellers of the Earth-Moon system take into account the Hubble expansion of
the Universe when they do their calculations? Explain your reasoning very clearly. [5]

(c) Consider a spherical region of radius r0 with a small excess mass δM (relative
to the critical value) in an Einstein-de Sitter (EdS) universe. The initial velocity at the
surface r0, relative to the centre of the sphere, is exactly what it would be in an EdS
universe without the excess mass. Show that the co-moving time τ at which the sphere
stops expanding and begins to recontract is given by an equation of the form∫ A/B

r0

dr

√
r

A−Br
= τ.

Express the constants A and B in terms of the gravitational constant G, M , δM and
r0, where M is the total mass of the sphere. [6]

(d) Little error is incurred if we set the lower limit of the integral to zero, but
retain r0 everywhere else. Using this approximation, solve for τ in terms of G, M , δM

and r0. [You are given that
∫ 1

0

√
u

1− u
du =

π

2
.]

[4]

(e) One of the most important tools of modern cosmology is a study of the rela-
tive temperature fluctuations, ∆T/T , in the cosmic microwave background (CMB) due
to density fluctuations. An over-density causes time to pass a little slower near the
fluctuation. Assume that in our above example the fluctuation has been caused by an
adiabatic compression. Show that the initial ∆T/T resulting from time delay is given
by the two terms:

∆T

T
= −GδM

r0c2
− ∆R

R

where ∆R/R represents the local relative change in the scale factor of the Universe
due to the effects of the density fluctuation. Be very clear in your explanation of the
physical origin of these two terms. In particular, what is the sign of the final term for
an over-density fluctuation? [7]
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2 2.

2.a (a)
At a point P in curved spacetime, we can choose locally inertial coordinates
ξα (α = 0, 1, 2, 3) such that the metric tensor gµν approximates the Minkowski
metric ηµν , which is a constant tensor. Specifically, we can set the conditions
at point P as:

1. gµν(P ) = ηµν

2. ∂λgµν(P ) = 0

Expanding the metric tensor about the point P in a Taylor series and keeping
terms up to the second order, we have:

gµν(x) = ηµν + ∂λ∂σgµν(P )ξλξσ +O(ξ3) (1)

where O(ξ3) represents terms of third order and higher in ξλ, which we are
neglected for the locally inertial approximation.

1
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2.b (b)
The covariant derivative of a vector Aλ is defined as:

Aλ
;µ = ∂µA

λ + Γλ
µνA

ν (2)

Here, ∂µAλ is the ordinary partial derivative of the vector, while Γλµν is the
Levi-Civita connection (also known as the Christoffel symbol of the second kind),
which corrects for the curvature of the spacetime. It is defined in terms of the
metric gµν as:

Γλ
µν =

1

2
gλρ(∂µgρν + ∂νgρµ − ∂ρgµν) (3)

The Levi-Civita connection Γλ
µν has two important properties:

1.Symmetry in the lower indices: The connection is symmetric with
respect to its lower two indices. This means that if we swap the positions of the
lower indices, the value of the connection remains the same:

Γλ
µν = Γλ

νµ (4)

This property simplifies the computation of covariant derivatives and plays
an important role in the derivation of the geodesic equation.

2.Metric compatibility: The connection is compatible with the metric,
meaning that the covariant derivative of the metric tensor gµν with respect to
any direction λ vanishes. Mathematically, this condition can be written as:

∇λgµν = gµν;λ = ∂λgµν − Γρ
µλgρν − Γρ

νλgµρ = 0 (5)

This property ensures that the length of a vector remains unchanged when
it is parallel transported along a curve, which is a fundamental requirement in
the geometry of curved spacetime.

2.c (c)
We can show that the covariant derivative of the metric tensor gµν vanishes using
the definition of the covariant derivative and the definition of the Levi-Civita
connection.

The covariant derivative of gµν is given by:

gµν;λ = ∂λgµν − Γρ
µλgρν − Γρ

νλgµρ (6)

Substituting the definition of the Levi-Civita connection into this equation,
we get:
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gµν;λ

(7)

= ∂λgµν − 1

2
gρσ(∂µgσλ + ∂λgσµ − ∂σgµλ)gρν − 1

2
gρσ(∂νgσλ + ∂λgσν − ∂σgνλ)gµρ

(8)

The terms involving the partial derivatives of the metric tensor will cancel
out, leaving us with:

gµν;λ = 0 (9)

This demonstrates that the covariant derivative of the metric tensor van-
ishes, as required by the property of metric compatibility of the Levi-Civita
connection.

2.d (d)
The metric tensor gab in a coordinate basis ea is defined as the dot product of
the basis vectors:

gab = ea · eb (10)

Differentiating this expression with respect to xc, we have:

∂gab
∂xc

=
∂ea
∂xc

· eb + ea ·
∂eb
∂xc

(11)

Using the given definition ∂ea

∂xc = Γd
aced, we rewrite the derivatives of the

basis vectors:

∂gab
∂xc

= Γd
aced · eb + ea · Γd

bced (12)

Finally, substituting gdb = ed · eb and gad = ea · ed, we obtain the desired
result:

∂gab
∂xc

= Γd
acgdb + Γd

bcgad (13)

This result shows that Γb
ac is the Christoffel symbol and is compatible with

the metric since the derivative of the metric can be expressed in terms of the
connection and the metric itself. This implies that the metric and connection
define a unique way to parallel transport vectors along a curve in the manifold,
preserving their length and angle with respect to the metric.
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2.e (e)
Basis vectors eθ and eϕ can be found by differentiating the position vector r =
R sin θ cosϕi+R sin θ sinϕj+R cos θk with respect to the coordinate variables
θ and ϕ

The basis vectors eθ and eϕ are obtained by differentiating the position
vector r = R sin θ cosϕi+R sin θ sinϕj+R cos θk with respect to the coordinate
variables θ and ϕ, respectively:

eθ =
∂r

∂θ
= R cos θ cosϕi+R cos θ sinϕj−R sin θkeϕ (14)

=
∂r

∂ϕ
(15)

= −R sin θ sinϕi+R sin θ cosϕj (16)

The metric tensor components gij are then obtained by taking the dot prod-
uct of the basis vectors:

gθθ = eθ · eθ = R2 (17)
gϕϕ = eϕ · eϕ = R2 sin2 θ (18)
gθϕ = gϕθ = eθ · eϕ = 0 (19)

This gives us the metric tensor as:

gij = R2

(
gθθ gθϕ
gϕθ gϕϕ

)
= R2

(
1 0
0 sin2 θ

)
(20)

This confirms the usual form of the metric tensor on a 2D spherical surface
embedded in 3D space, demonstrating that distances scale with the radius R
and that there is no mixed term, as the coordinate lines of constant θ and ϕ are
orthogonal.

2.f (f)
We start by recalling the expression for the Christoffel symbols:

Γa
bc =

1

2
gad(∂bgdc + ∂cgbd − ∂dgbc) (21)

Using the components of the metric tensor gab that we have derived previ-
ously for the 2D surface of a 3D sphere, we find that the only non-zero Christoffel
symbols are:

Γθ
ϕϕ = − sin θ cos θ, Γϕ

θϕ = Γϕ
ϕθ = cot θ (22)
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The equation for the parallel transport of a vector V along a curve of con-
stant θ on the surface of the sphere is:

V a
;ϕ =

∂V a

∂ϕ
+ Γa

bϕV
b = 0 (23)

This gives us two equations:

dV θ

dϕ
− sin θ cos θV ϕ = 0 (24)

dV ϕ

dϕ
+ cot θV θ = 0 (25)

These are a set of coupled ordinary differential equations which can be solved
by standard methods (e.g., by decoupling using the method of substitution or
the method of matrix exponentiation). The solutions are:

V θ = A cos(ϕ cos θ) +B sin(ϕ cos θ) (26)

V ϕ = −A
sin(ϕ cos θ)

sin θ
+B

cos(ϕ cos θ)

sin θ
(27)

Given the initial conditions θ = π/3 and ϕ = 0 and the initial components(
V θ, V ϕ

)
= (1, 0), we can determine the constants A and B as A = 1 and B = 0.

Therefore, the components of V when parallel transported along a full circle
of ϕ with constant θ, are

(
V θ, V ϕ

)
= (cos(2π cos(π/3)), 0) = (−1, 0).

As for the magnitude of V, it remains unchanged under parallel transport,
as parallel transport is defined to preserve the inner product of vectors. This is
consistent with the metric compatibility of the Levi-Civita connection, and it is
one of the fundamental properties of parallel transport. Hence, the magnitude
of V remains constant along the entire path.
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4 4.

4.a (a)

H0 =
7Km/s

MPc =⇒ 1parsec = 3.086× 1013km (28)

1Mpc = 106pc. (29)

H0 ≈ 70 km/s
(3.0861019 km)

≈ 2.268× 10−18 s−1 (30)

We’re given the Distance D is 4 × 105 km So If the Earth and the Moon were
to follow the Hubble flow, we can use the Hubble’s law to estimate the rate at
which the Moon would be receding from the Earth. Which would be given by.

H0D = v (31)
(2.268× 10−18 s−1)× 4× 105 km (32)

= 9.072× 10−13Km/s (33)

So

v = 9.072× 10−13Km/s (34)

Then we convert this to Cm/year 1Km = 105Cm, sec1Yr = 525600× 60 So, we
then convert

(9.072× 10−13Km/s)× (525600× 60)× (105Cm) (35)

= 2.862
Cm
Year (36)

Therefore we have a recession rate of

2.862
Cm
Year (37)

4.b (b)
The dominant forces acting in the Earth-Moon system are gravitational and
tidal forces, not the expansion of the universe. The gravitational force between
the Earth and the Moon is much stronger than the effect of cosmic expansion at
such short distances. Tidal forces are gradually transferring angular momentum
from the Earth to the Moon, causing the Moon to slowly recede from the Earth.

The Hubble expansion is most noticeable at cosmological scales, where the
effect of gravity becomes weaker due to larger distances involved. In such sce-
narios, the expansion of the universe can overcome the gravitational attraction
between galaxies, causing them to recede from each other.
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In the context of the Earth-Moon system, the effect of the Hubble expansion
is so minuscule that it is overwhelmed by the gravitational and tidal forces.
Therefore, it is generally ignored in the modeling of the Earth-Moon system.
The discrepancy between the calculated Hubble flow recession (2.862 cm/year)
and the observed recession (3.8 cm/year) is primarily due to these other effects,
rather than an underestimation of the effect of the Hubble expansion.

4.c (c)
In an Einstein-de Sitter (EdS) universe, we have a matter dominated, spatially
flat (k = 0) model with no cosmological constant (Λ = 0). The density param-
eter Ωm = 1, and the scale factor evolves with time according to a(t) ∝ t2/3.

Consider a spherical region of radius r0 with a small excess mass δM (relative
to the critical value) in this EdS universe. The initial velocity at the surface
r0, relative to the centre of the sphere, is exactly what it would be in an EdS
universe without the excess mass. To find the co-moving time τ at which the
sphere stops expanding and begins to recontract, we consider the conservation
of energy in this region.

For a test mass on the surface of the sphere, the total energy in the EdS
universe is given by E = 1

2v
2 − GM

r . However, in the presence of the excess
mass δM , the gravitational potential energy is increased, leading to:

E =
1

2
v2 − GM

r
− GδM

r
. (38)

Setting the kinetic energy to zero ( 1
2v

2 = 0), i.e., when the expansion of the
sphere stops, we have:

GM

r
+

GδM

r
=

GM

r0
. (39)

Solving this for r, we obtain:

r =
GM

2(GM/r0 −GδM)
=

A

B −Br
. (40)

Comparing with the provided equation, we can identify A = GM and B =
2(GM/r0 −GδM).

Now, let’s calculate the comoving time τ at which the sphere stops expanding
and starts to contract. This involves integrating the comoving time dt = dr/v
from the initial radius r0 to the radius at which expansion stops (as determined
above). Hence, we obtain:

τ =

∫ A/B

r0

dr√
2(GM/r −GδM)

=

∫ A/B

r0

dr

√
r

A−Br
. (41)
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4.d (d)
Little error is incurred if we set the lower limit of the integral to zero, but retain
r0 everywhere else. Using this approximation, solve for τ in terms of G,M, δM

and r0. [You are given that
∫ 1

0

√
u

1−u du = π
2 .]

So,
Given the integral:

τ =

∫ A/B

0

dr

√
r

A−Br
(42)

With A = GM and B = 2(GM/r0 −GδM), the integral becomes:

τ =

∫ r0

0

dr

√
rr0

GM − 2r(GM −GδM)
(43)

Letting u = Br = 2r(GM/r0 − GδM) gives us du = 2(GM/r0 − GδM)dr
and dr = du

2(GM/r0−GδM) . Substituting r and dr in terms of u into the integral:

τ =

∫ 1

0

du

2(GM/r0 −GδM)

√
u

1− u
(44)

Given the integral
∫ 1

0

√
u

1−udu = π
2 , we can evaluate the integral as:

τ =
π

4

1

GM/r0 −GδM
(45)

Which simplifies to:

τ =
πr0

4(GM −GδM)
(46)

So the time at which the sphere stops expanding and begins to contract in
terms of G,M, δM , and r0 is given by τ = πr0

4(GM−GδM) .

4.e (e)
The expression we need to interpret is:

∆T

T
= −GδM

r0c2
− ∆R

R
(47)

where ∆R/R represents the local relative change in the scale factor of the
Universe due to the effects of the density fluctuation.
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This can be considered as a combination of two physical effects. In detail
they are.

1. Gravitational time dilation: When we have a mass δM in a region of
space, it warps the spacetime around it. This curvature of spacetime leads to
gravitational time dilation, When we consider CMB photons passing through
this region, their observed frequency (and hence energy, and hence temperature)
will be affected by this time dilation. This leads to the term

−GδM

r0c2
(48)

in our expression for ∆T
T . Here G is the gravitational constant, r0 is the

distance to the fluctuation, c is the speed of light, and δM is the excess mass
causing the fluctuation. It’s negative because the time dilation makes the CMB
photons appear cooler, hence a decrease in temperature.

2. Change in scale factor: The second term in the expression

−∆R

R
(49)

is a measure of the relative change in the scale factor due to the density fluc-
tuation. This term describes the local expansion or contraction of the universe
caused by the density fluctuation. For an overdensity, the gravitational attrac-
tion will slow the local expansion of the universe. This means that CMB photons
travelling through this region will be less redshifted (hence appear warmer) than
those in regions which have expanded more. This term is negative, because for
an over-density fluctuation, the relative change in the scale factor ∆R/R is
negative (the region has expanded less than average).

So The total temperature fluctuation in the CMB due to a density fluctuation
is the sum of these two effects:

∆T

T
= −GδM

r0c2
− ∆R

R
(50)
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