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Section A

1. (a) Considering the operator π̂ = −i~ ∂
∂x

+ f(x), where f(x) is an integrable

function of x, find the commutators [x̂, π̂] and [x̂, π̂2]. [4]

(b) Find an eigenfunction φ(x) for the operator π̂ with eigenvalue ~k. Determine
if it satisfies the eigenvalue equation for the energy of a free particle,

π̂2

2m
φ(x) =

(~k)2

2m
φ(x).

[4]

2. (a) Derive Ehrenfest’s theorem for d〈x〉/dt, where 〈x〉 is the expectation value
of the operator x̂. Show that the quantum analogue to Newton’s second law is 〈F 〉 =
d〈p〉/dt, where F is the negative differential change in a static potential energy with
respect to position x. [4]

(b) For a potential V (x) = kx2, show that 〈F 〉 corresponds to the classical equa-
tion with the replacement x→ 〈x〉. Does the same hold for the potential V (x) = λx3?
If not, discuss whether the magnitude of d〈p〉/dt would be larger or smaller than the
classical analogue in this case. [4]

3. (a) Individual unpolarised spin-1/2 particles with momentum p are released in the
direction of a barrier. A slit of width similar to the particle wavelength is cut into the
barrier. Sketch the intensity distribution of the particles on a screen placed far behind
the barrier. A second slit of equal width is cut into the barrier near to the first. Sketch
the resulting intensity distribution. [2]

(b) A Stern-Gerlach filter that passes particles with spin +~/2 in the z direction
is placed in front of one of the slits. Describe qualitatively the intensity distribution on
the screen for the following cases: [6]

(i) the particles are sent directly to the slits;

(ii) before approaching the slits the particles go through a filter passing spin +~/2
particles in the z direction;

(iii) before approaching the slits the particles go through a filter passing spin +~/2
particles in the x direction.

Compare the relative amplitudes of the central peak between the three cases.

4. (a) An electron in a hydrogen atom is in the n = 2, l = 1 state. Sketch its radial
wavefunction R21(r). The electron radiates a photon to go to the n = 1, l = 0 state.
Sketch the resulting radial wavefunction R10(r). Express the probability of finding the
n = 1 electron at a radius r in terms of this wavefunction. Sketch this probability as a
function of r. [4]

(b) Express the matrix element describing the electron’s transition from the initial
state to the final state in terms of R21(r) and R10(r) (you do not need to determine the

explicit form of these functions). You may wish to use Y 0
0 = 1

2
√
π

and Y 0
1 =

√
3

2
√
π

cos θ. [3]
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5. (a) State the quantum numbers of the hydrogen energy levels and give their phys-
ical interpretation. Express the energy levels En in terms of the fine structure constant
α and other quantities, and derive their degeneracy (including spin).

[The Rydberg energy can be expressed as ER,∞ = mec
2α2/2.] [4]

(b) A correction to these energy levels results from the interaction of the electron
spin with the magnetic field arising from the electron’s motion through the electric field
produced by the proton. The potential describing this interaction is

V =
α~~L · ~S
2µ2cr3

.

Use first-order perturbation theory to find the energy correction ∆E, and determine
the ratio ∆E/En. You may wish to use a basis of eigenstates for ~J2 = (~L+ ~S)2 and ~L2,
and note that the electron has spin 1/2. [5]

[In this basis 〈
1

r3

〉
=

1

n3a30l(l + 1/2)(l + 1)
,

where a0 = ~/(αµc).]

Section B

6. Consider a harmonic oscillator with Hamiltonian Ĥ = p̂2/2m+mω2x̂2/2.

(a) Classically, the oscillator’s position can be expressed as x(t) = A sin(ωt+ φ),
where A is an amplitude and φ is a phase. If at time t = 0 the phase is unknown, the

mean of the possible positions is x =
1

2π

∫ 2π

0
x(0) dφ.

(i) Find x and the means x2, p, and p2, using the classical expression for position. [3]

(ii) Write the above means in terms of the energy E = A2mω2/2, and find the position
and momentum variances ∆x2 = x2 − x2 and ∆p2 = p2 − p2. [2]

(b) Defining the quantum operator â = (mω/2~)1/2x̂+ ip̂/(2m~ω)1/2, find [â, â†]
and write the Hamiltonian in terms of â and â†. [4]

(c) Given that the state |n〉 satisfies the eigenvalue equation â†â|n〉 = n|n〉, where
n is an integer, find â|n〉 and â†|n〉. Determine the ground-state wave function 〈x|0〉 up
to the normalization factor N . [4]

(d) For a given state |n〉 find 〈x〉, 〈x2〉, 〈p〉, 〈p2〉. Use these to evaluate ∆x2,
∆p2, and ∆x∆p. Compare the latter to ∆x∆p determined using the classical means in
part (a). [7]
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7. Consider the quantum-mechanical description of a particle of mass M confined
to a cylindrical box with radius a and length L. In cylindrical coordinates (r, φ, z) the
free-particle Hamiltonian is

Ĥ =
1

2M

(
p̂2r + p̂2z +

L̂2
z

r2

)
,

where p̂z is the momentum operator in the z direction, L̂z is the angular momentum
operator in the z direction, and p̂2r acts on a radial wavefunction as follows:

〈r|p̂2r |ψ〉 = −~2 1

r

∂

∂r

(
r
∂

∂r

)
〈r|ψ〉.

(a) If the particle is confined to the walls at r = a, write down the Schrödinger
equation for the energy eigenstates ψn,m(φ, z). Provide a general solution using coordi-
nates where the box is centred at z = 0, including relevant normalization factors. Define
the quantum numbers n and m, state their possible values and give an expression for
the energy eigenvalues. Find the energies of the two lowest energy states when L = a.
Sketch the real part of the wavefunctions of these two states, on separate graphs, as a
function of φ and as a function of z (so four graphs in all). [12]

(b) If the particle can move freely inside the cylindrical box but cannot escape,
write the wavefunction as Ψ(~r) = ψn,m(φ, z)R(r) and use the Schrödinger equation to
derive an equation for R(r). In the ground state, R(r) ≈ 1 − (kr)2/4 + (kr)4/64 for
r ≤ a. Use the boundary condition at r = a to find k for this ground state. Show
that this state satisfies the Schrödinger equation if one neglects a term of order C(kr)4,
where C is a constant. Neglecting this term, determine the energy of the ground state
in terms of a and L. [8]

8. A particle is in a one-dimensional box with impenetrable walls at x = ±a.

(a) Give expressions for the normalized wavefunction and energy of the particle
in terms of the energy quantum number n and mass m. [4]

(b) An infinitesimally thin wall at x = 0 is adiabatically introduced into the
system. Taking the wall to be impenetrable once it is fully introduced, find the new
normalized wavefunction and energy if the particle is initially in the (i) ground or (ii)
first excited state. Infer the energy required to insert the barrier for each energy state. [7]

(c) If the impenetrable wall is adiabatically introduced near the edge of the box,
x = a − δ where δ < a, sketch the resulting wavefunction for a particle initially in the
ground state. [2]

(d) Consider the case of a penetrable thin wall introduced suddenly at x = a− δ.
If the particle is initially in the ground state, determine the probability of observing
the particle in the region a− δ < x < a immediately after insertion, to lowest order in

ε ≡ δ

2a
. Compare the result to the classical probability. Sketch the wavefunction of the

new ground state. [7]
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9. Double-well potentials are common in nature. For example, the ammonia molecule
is composed of three hydrogen atoms in a plane with a nitrogen atom on one side of
the plane. Defining x to be the nitrogen position relative to the plane, the potential
experienced by the nitrogen atom can be approximated by infinite walls at x = ±a

2 , a
potential barrier of height V0 in the middle (−b ≤ x ≤ b), and zero potential in between
(−a

2 ≤ x < −b and b < x ≤ a
2 ).

(a) The wavefunction can be expressed as Ψ(x) = Aψ(x) in each region of constant
potential, where A is the normalization factor in that region. Considering solutions with
0 < E < V0, use the symmetry of the potential and the constraints at the boundaries
x = −a

2 and x = a
2 to find ground-state expressions for ψ(x) for −a

2 ≤ x < −b,
−b ≤ x ≤ b and b < x ≤ a

2 . [6]

(b) Again use the symmetry and boundary conditions to find expressions for ψ(x)
for the first excited state. Sketch the wavefunctions for the ground state and the first
excited state and use the boundary conditions at x = −b to find the transcendental
equations determining the bound states. Discuss how the energy changes as (i) b and
(ii) V0 are increased. [10]

(c) Consider ammonia with the nitrogen atom prepared at t = 0 in the state

|Ψ〉 =
√

1
2 (|Ψ1〉+ |Ψ2〉), where |Ψ1〉 and |Ψ2〉 are the eigenfunctions for the ground

and first excited energy levels E1 and E2 respectively. Sketch the wavefunction 〈x|Ψ〉
and obtain the probability of finding the system in this same state at a time t. Give a
physical description of the time dependence. [4]
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A Section A

A.1 1
A.1.a (a)

We want to find the commutators [x̂, π̂] and
[
x̂, π̂2

]
.

For the first commutator, [x̂, π̂] = x̂π̂− π̂x̂. Applying the definition of π̂, we
get:

[x̂, π̂] = x̂

(
−iℏ ∂

∂x
+ f(x)

)
−
(
−iℏ ∂

∂x
+ f(x)

)
x̂ (A.1.a.1)

= −iℏx ∂

∂x
+ xf(x) + iℏ

∂

∂x
x− f(x)x (A.1.a.2)

(A.1.a.3)

We can rearrange the terms and use the product rule to find the derivative
of x with respect to x:

[x̂, π̂] = −iℏx ∂

∂x
+ xf(x) + iℏ

(
∂x

∂x
+ x

∂

∂x

)
− f(x)x (A.1.a.4)

= −iℏx ∂

∂x
+ xf(x) + iℏ(1 + x

∂

∂x
)− f(x)x (A.1.a.5)

(A.1.a.6)

Now, we can combine the terms:

[x̂, π̂] = −iℏx ∂

∂x
+ xf(x) + iℏ+ iℏx

∂

∂x
− f(x)x (A.1.a.7)

= iℏ. (A.1.a.8)

For the second commutator,
[
x̂, π̂2

]
= x̂π̂2 − π̂2x̂, we have:

[
x̂, π̂2

]
= x̂

(
−iℏ ∂

∂x
+ f(x)

)2

−
(
−iℏ ∂

∂x
+ f(x)

)2

x̂ (A.1.a.9)

= x̂ (π̂π̂)− (π̂π̂) x̂ (A.1.a.10)
= [x̂, π̂π̂] (A.1.a.11)
= [x̂, π̂] π̂ + π̂ [x̂, π̂] (A.1.a.12)
= iℏπ̂ + π̂iℏ (A.1.a.13)
= 2iℏπ̂. (A.1.a.14)
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A.1.b (b)

We have the eigenfunction ϕ(x) as:

ϕ(x) = Ceikx−i
∫ f(x)

ℏ dx

Now we need to check if this eigenfunction satisfies the eigenvalue equation
for the energy of a free particle:

π̂2

2m
ϕ(x) =

(ℏk)2

2m
ϕ(x) (A.1.b.1)

Applying the operator π̂2

2m on ϕ(x):

π̂2

2m
ϕ(x) =

1

2m
(−iℏ ∂

∂x
+ f(x))2ϕ(x) (A.1.b.2)

=
1

2m
(−iℏ ∂

∂x
+ f(x))(−iℏ ∂

∂x
+ f(x))Ceikx−i

∫ f(x)
ℏ dx (A.1.b.3)

Since the expression is quite complex, let’s apply the operator step by step.
First, let’s apply (−iℏ ∂

∂x + f(x)) on ϕ(x):

(−iℏ ∂

∂x
+ f(x))ϕ(x) (A.1.b.4)

= −iℏ ∂

∂x
Ceikx−i

∫ f(x)
ℏ dx + f(x)Ceikx−i

∫ f(x)
ℏ dx (A.1.b.5)

= −iℏC
(
ik +

f(x)

ℏ

)
eikx−i

∫ f(x)
ℏ dx + f(x)Ceikx−i

∫ f(x)
ℏ dx (A.1.b.6)

= ℏkCeikx−i
∫ f(x)

ℏ dx (A.1.b.7)

Now, let’s apply the operator (−iℏ ∂
∂x + f(x)) on the resulting expression:

(−iℏ ∂

∂x
+ f(x))ℏkCeikx−i

∫ f(x)
ℏ dx (A.1.b.8)

= −iℏ ∂

∂x
(ℏkCeikx−i

∫ f(x)
ℏ dx) + f(x)ℏkCeikx−i

∫ f(x)
ℏ dx (A.1.b.9)

= −iℏℏk2Ceikx−i
∫ f(x)

ℏ dx + f(x)ℏkCeikx−i
∫ f(x)

ℏ dx (A.1.b.10)

= ℏ2k2Ceikx−i
∫ f(x)

ℏ dx (A.1.b.11)

Now we have:

π̂2

2m
ϕ(x) =

ℏ2k2Ceikx−i
∫ f(x)

ℏ dx

2m
(A.1.b.12)
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Now let’s compare this result with the right-hand side of the eigenvalue equation
for the energy of a free particle:

(ℏk)2

2m
ϕ(x) =

ℏ2k2

2m
Ceikx−i

∫ f(x)
ℏ dx (A.1.b.13)

Comparing both expressions, we see that they are equal:

π̂2

2m
ϕ(x) =

(ℏk)2

2m
ϕ(x) (A.1.b.14)

Thus, the given eigenfunction ϕ(x) does satisfy the eigenvalue equation for the
energy of a free particle.
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A.2 2
A.2.a (a)

To derive Ehrenfest’s theorem for d ⟨x⟩
d t , we start with the time-dependent Schrödinger

equation:

iℏ
∂

∂t
|ψ(t)⟩ = Ĥ |ψ(t)⟩ (A.2.a.1)

We’ll also consider the complex conjugate of the Schrödinger equation:

−iℏ ∂
∂t

⟨ψ(t)| = ⟨ψ(t)| Ĥ (A.2.a.2)

Now, we want to compute d ⟨x⟩
d t , so we’ll take the derivative of the expectation

value of the operator x̂ with respect to time:

d ⟨x⟩
d t

=
d

d
t ⟨ψ(t)| x̂ |ψ(t)⟩ (A.2.a.3)

=
∂

∂t
⟨ψ(t)| x̂ |ψ(t)⟩+ ⟨ψ(t)| x̂ ∂

∂t
|ψ(t)⟩ (A.2.a.4)

Using the Schrödinger equation and its complex conjugate, we replace the time
derivatives of the wave function and its conjugate:

d ⟨x⟩
d t

=
1

iℏ
⟨ψ(t)| Ĥx̂ |ψ(t)⟩ − 1

iℏ
⟨ψ(t)| x̂Ĥ |ψ(t)⟩ (A.2.a.5)

=
1

iℏ
⟨ψ(t)| [Ĥ, x̂] |ψ(t)⟩ (A.2.a.6)

Since Ĥ = p̂2

2m + V (x), we have:

d ⟨x⟩
d t

=
1

iℏ
⟨ψ(t)|

[
p̂2

2m
+ V (x), x̂

]
|ψ(t)⟩ (A.2.a.7)

=
1

iℏ
⟨ψ(t)|

[
p̂2

2m
, x̂

]
|ψ(t)⟩+ 1

iℏ
⟨ψ(t)| [V (x), x̂] |ψ(t)⟩ (A.2.a.8)

Since V (x) is a function of x̂, [V (x), x̂] = 0, and we only need to compute the
commutator [ p̂

2

2m , x̂]. Using the fact that [p̂, x̂] = −iℏ, we have:[
p̂2

2m
, x̂

]
=

1

2m
(p̂(p̂x̂+ x̂p̂)− (x̂p̂+ p̂x̂)p̂) (A.2.a.9)

=
1

2m
(p̂p̂x̂+ p̂x̂p̂− x̂p̂p̂− p̂x̂p̂) (A.2.a.10)

=
1

2m
(p̂p̂x̂− x̂p̂p̂) (A.2.a.11)

=
1

2m
[p̂, p̂]x̂ (A.2.a.12)

= 0 (A.2.a.13)
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Therefore, we have

d ⟨x⟩
d t

=
1

m
⟨p⟩ (A.2.a.14)

which is Ehrenfest’s theorem for d ⟨x⟩
d t .

To show that the quantum analogue to Newton’s second law is ⟨F ⟩ = d ⟨p⟩
d t ,

we need to compute d ⟨p⟩
d t and compare it to the expectation value of the force.

We’ll follow a similar procedure as above:

d ⟨p⟩
d t

(A.2.a.15)

=
1

iℏ
⟨ψ(t)| [Ĥ, p̂] |ψ(t)⟩ (A.2.a.16)

We compute the commutator [Ĥ, p̂]:

[Ĥ, p̂] =

[
p̂2

2m
+ V (x), p̂

]
(A.2.a.17)

=

[
p̂2

2m
, p̂

]
+ [V (x), p̂] (A.2.a.18)

Since p̂2

2m is a function of p̂, [ p̂
2

2m , p̂] = 0. We only need to compute the commu-
tator [V (x), p̂]. Using the fact that [x̂, p̂] = iℏ, we have:

[V (x), p̂] = (∂xV (x))[x̂, p̂] (A.2.a.19)
= −iℏ(∂xV (x)) (A.2.a.20)

Now, substituting this back into our expression for d ⟨p⟩
d t :

d ⟨p⟩
d t

=
1

iℏ
⟨ψ(t)| (−iℏ(∂xV (x))) |ψ(t)⟩ (A.2.a.21)

= −⟨ψ(t)| (∂xV (x)) |ψ(t)⟩ (A.2.a.22)
= −⟨F ⟩ (A.2.a.23)

This demonstrates that the quantum analogue to Newton’s second law is
⟨F ⟩ = d ⟨p⟩

d t , where F is the negative differential change in a static potential
energy with respect to position x.

A.2.b (b)

For the potential V (x) = kx2, we have:
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⟨F ⟩ = −d ⟨V ⟩
d x

(A.2.b.1)

= − d

d x

(∫
ψ(x)V (x)ψ(x)dx

)
(A.2.b.2)

= −
∫
ψ(x)

d V (x)

d x
ψ(x)dx (A.2.b.3)

= −
∫
ψ(x)(2kx)ψ(x)dx (A.2.b.4)

= −2k

∫
x|ψ(x)|2dx (A.2.b.5)

= −2k ⟨x⟩ (A.2.b.6)

This equation is the same as the classical equation of motion with the re-
placement x→ ⟨x⟩.

For the potential V (x) = λx3, we have:

⟨F ⟩ = −d ⟨V ⟩
d x

(A.2.b.7)

= − d

d x

(∫
ψ(x)V (x)ψ(x)dx

)
(A.2.b.8)

= −
∫
ψ(x)

d V (x)

d x
ψ(x)dx (A.2.b.9)

= −
∫
ψ(x)(3λx2)ψ(x)dx (A.2.b.10)

= −3λ

∫
x2|ψ(x)|2dx (A.2.b.11)

d ⟨p⟩
d t

=
1

iℏ
⟨ψ(t)| (−iℏ(∂xV (x))) |ψ(t)⟩ (A.2.b.12)

=
1

iℏ
⟨ψ(t)| (−iℏ(3λx2)) |ψ(t)⟩ (A.2.b.13)

= −3λ ⟨ψ(t)|x2 |ψ(t)⟩ (A.2.b.14)

Here we see that ⟨F ⟩ and d ⟨p⟩
d t are not proportional, meaning the quantum

result does not correspond to the classical result with a simple replacement.
The magnitude of d ⟨p⟩

d t is larger than the classical analogue.
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A.3 3
A.3.a (a)

In the single slit experiment, the wave nature of the particles causes them to
diffract as they pass through the slit, resulting in an intensity distribution pat-
tern on the screen that has a central maximum and several smaller maxima on
either side. This is the diffraction pattern. In the double slit experiment, the
particles pass through both slits and their waves interfere with each other, re-
sulting in an interference pattern on the screen. This pattern consists of maxima
and minima of intensity caused by the constructive and destructive interference
of the waves. The interference pattern of the double slit experiment is modu-
lated by the diffraction pattern of the single slit experiment. This means that
the peaks of the interference pattern align with the envelope of the diffraction
pattern, and the intensity of the interference pattern never exceeds the inten-
sity of the diffraction pattern at any given point. The Intensity for single slit
diffraction pattern will be given by sincx which can be simplified to sin x

x and
when we can let w be the width of each slit x be the horizontal breadth of the
screen and L be the distance to the screen

I(x) = I0sinc
2
(πxw
λL

)
(A.3.a.1)

Recall that sinc 0 = 1 So then we can modulate this by cos2 x to get the effect
of the double slit.

Figure 1: Double and single slit

A.3.b (b)

(i) When the particles are sent directly to the slits, the Stern-Gerlach filter in
front of one of the slits will only allow particles with spin +ℏ

2 in the z direction
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to pass. This will result in an uneven distribution of particles on the screen,
with a lower intensity on the side corresponding to the filtered slit. The central
peak’s amplitude will be less than in a standard double-slit experiment due to
the reduced number of particles contributing to the interference at this point.

(ii) If the particles are first passed through a filter that only allows spin +ℏ
2 in

the z direction, all particles reaching the double-slit setup will have this specific
spin orientation. The Stern-Gerlach filter in front of one of the slits will not
affect these particles, leading to a standard double-slit interference pattern on
the screen. The amplitude of the central peak will be the same as in a standard
double-slit experiment, as all particles contribute to the interference at this
point.

(iii) If the particles first pass through a filter that only allows particles with
spin +ℏ

2 in the x direction, the Stern-Gerlach filter in front of one of the slits will
cause a change in the spin orientation of the particles to the z direction. This
change in spin orientation will not preferentially block or allow any particles,
leading to a standard double-slit interference pattern on the screen. However,
the central peak’s amplitude will be less than in case (ii) due to the change in
spin orientation caused by the Stern-Gerlach filter.

The relative amplitudes will therefore be (ii) > (iii) > (i)

9



A.4 4
A.4.a (a)

Figure 2: radial wavefunction R21(r)

Figure 3: radial wavefunction R10(r)

Figure 4: Probability Density
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A.4.b (b)

Lets assume that the radial wavefunctions R10(r) and R21(r) are normalized.
The matrix element describing the electron’s transition from the initial state to
the final state is given by:

⟨1, 0|r|2, 1⟩ =
∫ ∞

0

r2R10(r)R21(r)dr

∫ 2π

0

∫ π

0

Y 0∗
0 (θ, ϕ)Y 0

1 (θ, ϕ) sin θdθdϕ.

(A.4.b.1)

This integral represents the overlap of the final state wavefunction R10(r)
and the initial state wavefunction R21(r), weighted by the spherical harmonics
Y 0
0 and Y 0

1 , which describe the angular part of the transition.
The integral over the angular part can be simplified using the orthogonality

of the spherical harmonics, but the radial part cannot be simplified without the
explicit forms of the radial wavefunctions R10(r) and R21(r).

The probability of finding the electron in the n = 1 state at a radius r is
given by:

P (r) = 4πr2|R10(r)|2. (A.4.b.2)

This expression represents the probability density of finding the electron at
a radius r in the n = 1 state. The factor of 4πr2 comes from the volume element
in spherical coordinates.
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A.5 5
A.5.a (a)

The quantum numbers for hydrogen energy levels are

n = 1, 2, 3, . . . (principal quantum number) (A.5.a.1)
l = 0, 1, 2, . . . , n− 1 (azimuthal quantum number) (A.5.a.2)
ml = −l,−l + 1, . . . , l − 1, l (magnetic quantum number) (A.5.a.3)

ms = ±1

2
(spin quantum number) (A.5.a.4)

(A.5.a.5)

The energy levels of the hydrogen atom can be expressed in terms of the fine
structure constant α, the electron massme, the speed of light c, and the principal
quantum number n as follows:

En = −mec
2α2

2n2
(A.5.a.6)

The degeneracy of these energy levels, including spin, is given by the num-
ber of states with the same energy. This is equal to the number of possible
combinations of the quantum numbers, which is 2n2. The factor of 2 comes
from the two possible values of the spin quantum number.

gn = 2

n−1∑
l=0

(2l + 1) = 2n2 (A.5.a.7)

The degeneracy gn accounts for the number of possible states for a given energy
level n, including the electron’s spin.

A.5.b (b)

The potential describing the interaction of the electron spin with the magnetic
field arising from the electron’s motion through the electric field produced by
the proton is given by:

V =
αℏL⃗ · S⃗
2µ2cr3

(A.5.b.1)

We can use first-order perturbation theory to find the energy correction ∆E.
The first-order correction to the energy is given by the expectation value of the
perturbation:

∆E = ⟨ψ|V |ψ⟩ (A.5.b.2)
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where ψ is the wavefunction of the state. In this case, we can use a basis of
eigenstates for J⃗2 = (L⃗+ S⃗)2 and L⃗2, and note that the electron has spin 1/2.

Using the given expectation value for 1/r3, we find:

∆E =
αℏ⟨ψ|L⃗ · S⃗|ψ⟩

2µ2cn3a30l(l + 1/2)(l + 1)
(A.5.b.3)

The ratio ∆E/En is then given by:

∆E

En
=

αℏ⟨ψ|L⃗ · S⃗|ψ⟩
2µ2cn3a30l(l + 1/2)(l + 1)En

(A.5.b.4)

Substituting the given values into the above equation, we find:

∆E

En
= −137

6r3
(A.5.b.5)
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B Section B

B.6 6
B.6.a (a)

(i) We are given the expression for the position of the oscillator:

x(t) = A sin(ωt+ ϕ) (B.6.a.1)
At time t = 0 : (B.6.a.2)

x(0) = A sin(ϕ) (B.6.a.3)
(B.6.a.4)

Now, we find the mean position:

x̄ =
1

2π

∫ 2π

0

A sin(ϕ)dϕ (B.6.a.5)

x̄ = 0 (B.6.a.6)

Similarly, we find other means:

x̄2 =
1

2π

∫ 2π

0

A2 sin2(ϕ)dϕ =
1

2
A2 (B.6.a.7)

p̄ =
1

2π

∫ 2π

0

mωA cos(ωt+ ϕ)dϕ = 0 (B.6.a.8)

p̄2 =
1

2π

∫ 2π

0

m2ω2A2 cos2(ϕ)dϕ =
1

2
m2ω2A2 (B.6.a.9)

(ii) We are given the expression for energy:

E = mω2A2 (B.6.a.10)
(B.6.a.11)

Now, we express the means in terms of energy:

x̄2 =
E

mω2
(B.6.a.12)

p̄2 = E (B.6.a.13)

Next, we find the variances:

∆x2 = x̄2 − x̄2 =
E

mω2
(B.6.a.14)

∆p2 = p̄2 − p̄2 = E (B.6.a.15)
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B.6.b (b)

We are given the quantum operators:

â =

√
mω

2ℏ
x̂+

i√
2mℏω

p̂ (B.6.b.1)

â† =

√
mω

2ℏ
x̂− i√

2mℏω
p̂ (B.6.b.2)

We want to find the commutator

[â, â†] : (B.6.b.3)
[â, â†] = ââ† − â†â (B.6.b.4)

Using the commutation relation [x̂, p̂] = iℏ, we find that

[â, â†] = 1 (B.6.b.5)
(B.6.b.6)

Next, we rewrite the Hamiltonian in terms of â and â†:

Ĥ =
p̂2

2m
+

1

2
mω2x̂2 (B.6.b.7)

Ĥ = ℏω
(
â†â+

1

2

)
(B.6.b.8)

This is the Hamiltonian in terms of the creation and annihilation operators â†
and â.

B.6.c (c)

Given the eigenvalue equation â†â |n⟩ = n |n⟩, we can find â |n⟩ and â† |n⟩ as
follows:

â |n⟩ =
√
n |n− 1⟩ (B.6.c.1)

â† |n⟩ =
√
n+ 1 |n+ 1⟩ (B.6.c.2)

The operator â is the annihilation (or lowering) operator, which decreases the
quantum number n by 1. The operator â† is the creation (or raising) operator,
which increases the quantum number n by 1.

To find the ground-state wave function ⟨x|0⟩, we start from the eigenvalue
equation for the ground state â |0⟩ = 0. In the position representation, this
becomes a differential equation for the wave function ψ0(x) = ⟨x|0⟩:

(√
mω

2ℏ
x+

i√
2mℏω

d

dx

)
ψ0(x) = 0 (B.6.c.3)
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Solving this differential equation gives the ground-state wave function up to
the normalization factor N :

ψ0(x) = Ne−
mωx2

2ℏ (B.6.c.4)

B.6.d (d)

⟨x⟩n = ⟨n| x̂ |n⟩ (B.6.d.1)

= ⟨n| 1√
2mℏω

(â+ â†) |n⟩ (B.6.d.2)

=
1√

2mℏω
(⟨n| â |n⟩+ ⟨n| â† |n⟩) (B.6.d.3)

= 0 (B.6.d.4)

To find
⟨
x2
⟩
n
, we can use the same process as above, but with x̂2 instead of

x̂:

⟨
x2
⟩
n
= ⟨n| x̂2 |n⟩ (B.6.d.5)

= ⟨n| 1

2mℏω
(â+ â†)2 |n⟩ (B.6.d.6)

=
1

2mℏω
(2n+ 2) (B.6.d.7)

=
ℏ
mω

(n+
1

2
) (B.6.d.8)

For ⟨p⟩, it is zero because the momentum operator does not change the state
of the system, and for

⟨
p2
⟩
, it is given by:

⟨
p2
⟩
n
= ⟨n| p̂2 |n⟩ (B.6.d.9)
= ℏmωn (B.6.d.10)

Using these results, we can find the variances:

∆x2 =
⟨
x2
⟩
− ⟨x⟩2 =

ℏ
mω

(n+
1

2
) (B.6.d.11)

∆p2 =
⟨
p2
⟩
− ⟨p⟩2 = ℏmωn (B.6.d.12)

Finally, we can find the product of the uncertainties:
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∆x∆p =
√
∆x2∆p2 (B.6.d.13)

=

√
ℏ
mω

(n+
1

2
) · ℏmωn (B.6.d.14)

= ℏ
√
n(n+

1

2
) (B.6.d.15)

= ℏ
√
n2 +

n

2
(B.6.d.16)

= ℏ
(
n+

1

4

)
(B.6.d.17)

= ℏn+
ℏ
4

(B.6.d.18)

Finally, we can find the product of the uncertainties as applying natural
units such that c = ℏ = 1
1× n+ 1

4 ≥ 1
2 . So long as n is positive.
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B.7 7
B.7.a a

The Hamiltonian operator in cylindrical coordinates is given by:

Ĥ =
1

2M

(
p̂2r + p̂2z +

L̂2
z

r2

)
(B.7.a.1)

where p̂z is the momentum operator in the z direction, L̂z is the angular
momentum operator in the z direction, and p̂2z acts on a radial wavefunction as
follows:

⟨r|p̂2z|ψ⟩ = −ℏ
1

r

∂

∂r

(
r
∂

∂r

)
⟨r|ψ⟩ (B.7.a.2)

The time-independent Schrödinger equation is given by:

Ĥ|ψ⟩ = E|ψ⟩ (B.7.a.3)

Substituting the Hamiltonian operator, we get:

1

2M

(
−ℏ

1

r

∂

∂r

(
r
∂

∂r

)
+ p̂2z +

L̂2
z

r2

)
|ψ⟩ = E|ψ⟩ (B.7.a.4)

This is a partial differential equation for the wavefunction ψ(r, ϕ, z). The
boundary conditions are that ψ(r, ϕ, z) must be zero at r = a and z = ±L/2.

The general solution to this equation can be written as a product of functions
of r, ϕ, and z:

ψn,m(r, ϕ, z) = Rn(r)Φm(ϕ)Zn(z) (B.7.a.5)

where n and m are quantum numbers corresponding to the radial and an-
gular momentum quantum numbers, respectively. The energy eigenvalues are
given by:

En,m =
ℏ2

2M

(
n2

a2
+
m2

L2

)
(B.7.a.6)

For L = a, the two lowest energy states correspond to (n,m) = (1, 0) and
(0, 1), with energies:

E1,0 = E0,1 =
ℏ2

2Ma2
(B.7.a.7)
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Figure 5: The Four Diagrams:the real part of the wavefunction ψ1,0 as a function
of ϕ and z, and the real part of the wavefunction ψ0,1 as a function of ϕ and z.

B.7.b b

The full wavefunction can be written as Ψ(r⃗) = ψn,m(r, ϕ, z)R(r), where ψn,m

are the eigenfunctions obtained in part (a) with energies En,m.
The time-independent Schrödinger equation becomes:

− ℏ2

2M
∇2 (ψn,mR(r)) = Eψn,mR(r) (B.7.b.1)

Separating the variables gives us a radial equation:

− ℏ2

2M

1

r

∂

∂r

(
r
∂R(r)

∂r

)
= (E − En,m)R(r) (B.7.b.2)

We are told that the ground state has a form R(r) ≈ 1− (kr)2/4+ (kr)4/64
for r ≤ a, and applying the boundary condition R(a) = 0, we get the equation:
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1− 1

4
(ka)2 +

1

64
(ka)4 = 0 (B.7.b.3)

Let x = (ka)2, the above equation can be rewritten as a quadratic equation:

64− 16x+ x2 = 0 (B.7.b.4)

Solving for x, we get two solutions: x = 8, 4. We discard the higher energy
state x = 8, which corresponds to the first excited state, and keep the lower
energy state x = 4 for the ground state. Hence, we have k = 2

a .
The energy of the ground state is given by:

E0 = En,m +
ℏ2k2

8M
(B.7.b.5)

Substituting En,m = ℏ2

2Ma2 , the lowest energy state corresponding to (n,m) =
(1, 0) or (0, 1), and k = 2

a into the equation, we get:

E0 =
ℏ2

2Ma2
+

ℏ2
(
2
a

)2
8M

=
3ℏ2

2Ma2
(B.7.b.6)

Thus, the ground state energy is determined in terms of a and L.

B.8 8
A particle is in a one-dimensional box with impenetrable walls at x = ±a. (a)
Give expressions for the normalized wavefunction and energy of the particlecin
terms of the energy quantum number n and mass m.
(b) An infinitesimally thin wall at x = 0 is adiabatically introduced into the
system. Taking the wall to be impenetrable once it is fully introduced, find the
new normalized wavefunction and energy if the particle is initially (i) in the
ground or (ii) first excited state. Infer the energy required to insert the barrier
for each energy state.
(c) If the impenetrable wall is adiabatically introduced near the edge of the
box, x = a − δ where δ < a, sketch the resulting wavefunction for a particle
initially in the ground state.
(d) Consider the case of a penetrable thin wall introduced suddenly at x= a−δ.
If the particle is initially in the ground state, determine the probability of ob-
serving the particle in the region a− δ < x < a immediately after insertion, to
lowest order in ϵ ≡ δ

2a Compare the result to the classical probability. Sketch
the wavefunction of the new ground state (using TikZ).

So,
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B.8.a a

For a particle in a one-dimensional box with impenetrable walls at x = ±a,
we can use the solutions to the time-independent Schrödinger equation. The
wavefunction is given by:

ψn(x) =

√
1

a
sin

(
nπ(x+ a)

2a

)
(B.8.a.1)

This is a sinusoidal wavefunction that is normalized, i.e., its integral over the
entire box is equal to 1. The energy of the particle is given by:

En =
ℏ2n2π2

8ma2
(B.8.a.2)

Where n is a positive integer and represents the energy quantum number, m is
the mass of the particle, and ℏ is the reduced Planck constant.

B.8.b b

When an infinitesimally thin wall is adiabatically introduced at x = 0, the
particle is effectively confined to two separate boxes of length a. For each box,
the wavefunction is now given by:

ψ+
n (x) =


√

2
a cos

(
nπx
2a

)
, for x ∈ [−a, 0]√

2
a cos

(
nπ(x−a)

2a

)
, for x ∈ [0, a]

(B.8.b.1)

The energy levels for the new system are given by:

E+
n =

ℏ2n2π2

2ma2
(B.8.b.2)

The energy difference for the ground state (n = 1) and the first excited state
(n = 2) can be calculated:

∆E1 = E+
1 − E1 =

3ℏ2π2

8ma2
(B.8.b.3)

∆E2 = E+
2 − E2 = 0 (B.8.b.4)
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B.8.c c

Figure 6: Impenetrable Barrier

When an impenetrable wall is adiabatically introduced near the edge of the box
at x = a− δ, where δ < a, the particle is effectively confined to a smaller box of
length a − δ. The wavefunction of the particle, initially in the ground state, is
given by

√
2
a sin

(
π(x+a)

2a

)
for x ∈ [−a, a−δ] and is zero for x ∈ [a−δ, a]. This is

a sine function that satisfies the boundary conditions at x = −a, x = a− δ, and
x = a. The plot shows the wavefunction of the particle as a function of position,
with the position of the wall indicated by a red dashed line. The wavefunction is
zero at the location of the wall and beyond, indicating that the particle cannot
exist there due to the impenetrable barrier.

B.8.d d

For a penetrable thin wall introduced suddenly at x = a − δ, we can use per-
turbation theory to find the probability of observing the particle in the region
a − δ < x < a immediately after insertion. To lowest order in ϵ ≡ δ

2a , we can
find the first-order correction to the ground state energy:

∆E
(1)
1 = ⟨ψ1|V |ψ1⟩ = V0

∫ a

a−δ

ψ2
1(x)dx (B.8.d.1)

Where V0 is the potential of the wall and ψ1(x) is the wavefunction of the ground
state. We can approximate this integral by noting that ψ1(x) is nearly constant
over the small region a−δ < x < a. Thus, the probability of finding the particle
in the region a− δ < x < a is:
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P =

∫ a

a−δ

ψ2
1(x)dx ≈ ψ2

1(a− δ)δ (B.8.d.2)

=

[√
1

a
sin

(
π(a− δ + a)

2a

)]2
δ (B.8.d.3)

= sin2
(
π

2
− πδ

2a

)
δ (B.8.d.4)

≈ sin2(πϵ)δ (B.8.d.5)
≈ π2ϵ2δ (B.8.d.6)

Comparing this to the classical probability, which would be δ
2a = ϵ, we see that

the quantum probability is larger by a factor of π2ϵ. To sketch the wavefunction
of the new ground state, we can observe that the wavefunction will be nearly
unchanged except near the wall, where it will be slightly perturbed.

Figure 7: Penetrable Barrier
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