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Section A

1. Explain what is meant by function of state. A body is heated and its temperature
increases from Ti to Tf . Write down an expression, in terms of the relevant quantities,
for the change in its entropy. [4]

2. Derive the Maxwell relation:

(
∂S

∂V

)
T

=

(
∂P

∂T

)
V
.

[2]

Calculate the total entropy changes when:

(i) a mole of ideal gas undergoes a Joule expansion from volume V to 2V . [2]

(ii) two different gases (a mole of each) are initially in separate halves of a ther-
mally isolated box of total volume 2V , and then the barrier between the two parts of
the box is removed allowing the gases to mix. [2]

3. State briefly the physical origin of the terms a/V 2 and b in the van der Waals
equation of state:

p =
RT

V − b
− a

V 2
,

where R is the molar gas constant. [3]

Determine the work done by the gas during an isothermal expansion of one mole
of gas from an initial volume V1 to a final volume V2. Determine the change in the
internal energy U of the gas during this process and comment on its sign. [4]

4. The equilibrium separation between hydrogen nuclei in the hydrogen molecule is
0.074 nm and the force constant of the bond is 580 Nm−1. Estimate the temperature
needed to excite (i) the lowest rotational mode and (ii) the lowest vibrational mode. [6]

5. A car tyre is inflated to pressure 270 kPa at the beginning of a trip. After the
journey the pressure in the tyre is found to be 300 kPa. What is the internal energy
change of the air in the tyre between the pressure measurements? You may assume that
the air is an ideal gas with a constant molar heat capacity CV = 5R/2 and that the
internal volume of the tyre remains constant at 5.7×10−3 m−3. [5]

6. An ensemble of one-dimensional harmonic oscillators with natural angular fre-
quency ω = 6 × 106 rad s−1 is prepared with every member in its 3rd excited state
(i.e. vibrational quantum number n = 3) and then isolated as the ensemble relaxes to
thermal equilibrium. Find the final temperature. [7]
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7. (a) A small spherical satellite with uniform temperature is in orbit around the Sun.
The Sun subtends a solid angle of 7×10−5 steradians at the satellite. Assuming that
the emissivity of the satellite is independent of wavelength and that the temperature of
the Sun’s surface is 5780 K, calculate the temperature of the satellite. [4]

(b) It is proposed to coat the satellite with a layer of paint so as to lower its tem-
perature. Sketch a suitable curve of emissivity of the paint, as a function of wavelength,
so as to achieve this. [1]

Section B

8. (a) Consider an ideal gas having constant heat capacity CV . Find the relationship
between pressure p, energy density u and adiabatic index γ. Explain briefly which parts
of your derivation would change if the gas were not ideal. [5]

(b) Find an expression for the pressure gradient in a fluid of density ρ(r) in
equilibrium in a gravitational field g (hydrostatic equilibrium). [2]

(c) Under what conditions is it the case that∫ x2

x1

x3
df

dx
dx = −3

∫ x2

x1

x2fdx

where f(x) is some general function of x? [2]

(d) Consider a hot spherical cloud of gravitating particles in otherwise empty
space (i.e. like a star, but without any nuclear reactions). This can be modelled by
treating each small part as an ideal gas. The pressure, temperature and density ρ are
all functions of r. Let M(r) be the mass of the material within a radius r:

M(r) =

∫ r

0
ρ4πr′2 dr′.

Write down the relationship between the pressure gradient dp/dr and properties of the
cloud in hydrostatic equilibrium. The pressure goes to zero at the surface of the cloud:
explain briefly why this must be so. Hence show that the total thermal energy, U , and
the total gravitational potential energy, Ω, are related by

3(γ − 1)U + Ω = 0.

[6]

(e) A cloud with N particles and γ = 5/3 radiates away some energy ∆Q. Find
the change in temperature of the cloud, paying attention to the sign. Hence find the
heat capacity of the cloud. If two such clouds are exchanging radiant heat, describe
qualitatively what will happen over time. [5]
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9. (a) Show that if In =

∫ ∞
0

xn exp(−αx2)dx then 2αIn = (n− 1)In−2. [2]

A monatomic gas is held at low pressure p and temperature T . The velocity
distribution function has the form:

C exp(−α[υ2x + υ2y + υ2z ])

(b) Write down an expression for α in terms of the relevant thermodynamics
quantities. [1]

(c) Derive an expression for the energy distribution function and sketch the dis-
tribution. [5]

(d) Calculate the mean kinetic energy per atom in the gas at temperature T . [2]

(e) A container of gas at temperature T has a hole whose radius is small compared
to the mean free path. Gas particles stream through the hole into a vacuum. A box is
opened for a short time and catches some of the particles. Find the final temperature
of the gas trapped in the box in the cases: (i) a monatomic gas, (ii) a diatomic gas in
which rotation is fully thermally excited and vibration is not excited. (In all cases the
thermal capacity of the box can be ignored.) [7]

Explain qualitatively what you would expect in a similar experiment with a hole
of radius larger than the mean free path (but still small compared to other distances in
the apparatus). [3]

10. A paramagnetic solid has n atoms per unit volume, each with a permanent mag-
netic dipole moment µ. In an applied magnetic field, B, each atom has two energy
eigenstates with energies ±µB.

(a) Obtain an expression for the magnetic susceptibility of the solid in terms of
the above properties and temperature T , assuming n is small and the atoms behave
independently. [5]

(b) Obtain the relationship between entropy S and total dipole moment m of the
solid. [3]

(c) Let N be the total number of dipoles. Sketch the form of the magnetic
heat capacity C as a function of temperature, including labelled estimates of the main
features (the full expression is not required), and state the value of

∫∞
0 (C/T )dT . [4]

(d) The solid is prepared at temperature 1 K in a magnetic field of 1 T. It is then
thermally isolated and the field is reduced adiabatically to 0.3 T. Describe what happens
to the dipoles, and find the final temperature. [3]

(e) Outline qualitatively what happens in a real (not idealized) experiment in the
following two cases:
(i) the field is reduced adiabatically to 0 T;
(ii) the direction of the field is abruptly reversed. [5]
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11. In a simple model of a binary alloy there are two types of atom, A and B, and
two types of lattice site, 1 and 2. In a given crystal there are N sites of each type and
N atoms of each type. In a state of complete order, all the A atoms are on sites of type
1, and all the B atoms are on sites of type 2, as in the left diagram below which shows
an example with N = 8 and type 1 sites shaded. At non-zero temperature some atoms
swap sites, as illustrated in the right diagram.

A B A B
B A B A
A B A B
B A B A

A B A A
B B B A
B A A B
B A B A

A microstate can be specified by stating the type of atom at each site. A macrostate
can be specified by giving the values of N and n. A state in which 2n atoms (n of each
type) have moved has energy U = nε.

(a) For a given N , write down an expression for the number of microstates having
energy nε. Hence find the entropy of this macrostate, using the microcanonical ensemble,
and show that in the case where N, n� 1 the result can be written approximately as

S = −a (p1 ln p1 + p2 ln p2)

where you should give expressions for the constant a and the variables p1 and p2. [4]

(b) Throughout the rest of the question, assume N,n� 1. Find the temperature
of the equilibrium state of energy U = nε in terms of N , n, ε and kB. Simplify your
expression for the cases (i) n� N and (ii) n = N/2 and comment. [5]

(c) Now consider a single site. Let the energy of the site be 0 when it is occupied
by an atom of one type, and ε/2 when it is occupied by an atom of the other type.
Confirm that this assignment is consistent with U = nε for the whole crystal. A single
site can be treated in the canonical ensemble by regarding the rest of the crystal as
a thermal reservoir. Adopting this approach, write down the partition function for a
single site, and hence obtain the mean energy Ū1 of a single site in conditions of thermal
equilibrium. Confirm that your expression is consistent with the result of part (b). [5]

(d) Assume that each atom interacts only with its nearest neighbours through an
attractive energy of −E (E>0) between like neighbours A-A and B-B, and a repulsive
energy of +E for an A-B pair. What is the state of the system at zero temperature? [3]

(e) Estimate the total interaction energy assuming that the atoms are randomly
distributed among the N sites; i.e. each site is occupied independently with probabilities
pA= NA/N and pB=NB/N . [3]
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A Section A

A.1 1.
A state function, also known as a thermodynamic property, is a property of a
system that depends only on the current state of the system, and is independent
of the process taken to reach that state. Examples include pressure (P ), volume
(V ), temperature (T ), internal energy (U), enthalpy (H), and entropy (S).

The change in entropy (∆S) of a body heated from an initial temperature
Ti to a final temperature Tf is given by:

∆S =

∫ Tf

Ti

C(T )

T
dT, (A.1.1)

where C(T ) is the relevant heat capacity. This could be the heat capacity
at constant pressure Cp(T ) or at constant volume Cv(T ), depending on the
conditions of the process. If the heat capacity is approximately constant over
the temperature range of interest, the equation simplifies to:

∆S = C ln
Tf

Ti
. (A.1.2)
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A.2 2.
We start with the thermodynamic potential F = U − TS, where U is the
internal energy, T is the temperature, S is the entropy, and F is the Helmholtz
free energy. The total differential of F is:

dF = −SdT − PdV, (A.2.1)

where P is the pressure and V is the volume. The desired Maxwell relation
can be derived by calculating the mixed second derivatives, which should be
equal due to Schwarz’s theorem:

(
∂2F

∂T∂V

)
=

(
∂2F

∂V ∂T

)
. (A.2.2)

Performing these derivatives on the left and right side, we get the Maxwell
relation:

(
∂S

∂V

)
T

=

(
∂P

∂T

)
V

. (A.2.3)

Now, let’s calculate the entropy changes in the two given situations:
(i) Consider an ideal gas undergoing a Joule expansion from volume V to

2V at constant temperature. The entropy change ∆S in this isothermal process
can be calculated from the Sackur-Tetrode equation for the entropy of an ideal
gas:

S = Nk

[
ln

(
V

N

(
4πmU

3Nh2

)3/2
)

+
5

2

]
. (A.2.4)

Neglecting terms that do not depend on V , we can write the entropy differ-
ence as

∆S = Nk ln
Vf

Vi
= R ln 2. (A.2.5)

(ii) Consider two different gases (a mole of each) initially in separate halves
of a thermally isolated box of total volume 2V . The entropy change when the
barrier is removed and the gases mix consists of the entropy changes for each
gas due to expansion plus the entropy change due to the mixing.

The expansion entropy change for each gas is R ln 2, so the total expansion
entropy change is 2R ln 2.

The mixing entropy change for each gas can be calculated using the formula
for entropy change upon mixing of two ideal gases:
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∆Smix = −nR
∑
i

xi lnxi, (A.2.6)

where xi = 0.5 is the mole fraction of each gas. This yields ∆Smix = R ln 2.
So, the total entropy change is ∆Stotal = ∆Stotal,expansion+∆Smix = 3R ln 2.

4



A.3 3.
The van der Waals equation of state, given by

p =
RT

V − b
− a

V 2
, (A.3.1)

accounts for the non-ideal behavior of gases. Here, a and b are the van der
Waals constants, which account for intermolecular attractions and molecular
volume, respectively. The work done W during an isothermal expansion of one
mole of gas from an initial volume V1 to a final volume V2 can be calculated
by integrating the pressure p with respect to volume V : The work done W
during an isothermal expansion of one mole of gas from an initial volume V1 to
a final volume V2 can be calculated by integrating the pressure p with respect
to volume V :

W = −
∫ V2

V1

p dV = −
∫ V2

V1

(
RT

V − b
− a

V 2

)
dV. (A.3.2)

This integral can be split into two parts:

W = −
∫ V2

V1

RT

V − b
dV +

∫ V2

V1

a

V 2
dV. (A.3.3)

The first integral can be solved by substitution. Let u = V −b, then dV = du
and when V = V1, u = V1− b, and when V = V2, u = V2− b. Substituting these
values gives:

−
∫ V2

V1

RT

V − b
dV (A.3.4)

= −RT

∫ V2−b

V1−b

1

u
du (A.3.5)

= −RT lnu

∣∣∣∣V2−b

V1−b

(A.3.6)

= −RT ln

(
V2 − b

V1 − b

)
. (A.3.7)

The second integral is a standard integral of the form
∫
x−n dx = x1−n

1−n ,
which gives:
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∫ V2

V1

a

V 2
dV (A.3.8)

= a

∫ V2

V1

V −2 dV (A.3.9)

= a

[
− 1

V

]V2

V1

(A.3.10)

= a

(
1

V1
− 1

V2

)
. (A.3.11)

Therefore, the total work done during the isothermal expansion is:

W = −RT ln

(
V2 − b

V1 − b

)
+ a

(
1

V1
− 1

V2

)
. (A.3.12)

For an isothermal process, the change in internal energy ∆U of the system
is zero due to the first law of thermodynamics:

∆U = Q−W = 0, (A.3.13)

where Q is the heat absorbed by the system. This implies that the work done
by the system is compensated by the heat absorbed from the surroundings.
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A.4 4.
We are given the equilibrium separation between hydrogen nuclei in the hydro-
gen molecule as 0.074 nm and the force constant of the bond as 580 N/m. Our
goal is to estimate the temperature needed to excite (i) the lowest rotational
mode and (ii) the lowest vibrational mode.

(i) To find the temperature needed to excite the lowest rotational mode, we
first need to calculate the moment of inertia I of the hydrogen molecule. The
moment of inertia can be expressed as:

I = µR2, (A.4.1)

where µ is the reduced mass of the hydrogen molecule and R is the equilib-
rium separation between hydrogen nuclei. The reduced mass can be calculated
as:

µ =
m1m2

m1 +m2
, (A.4.2)

where m1 and m2 are the masses of the hydrogen nuclei. Since both nuclei
are hydrogen, their masses are equal, and we can simplify the reduced mass as:

µ =
m

2
, (A.4.3)

where m is the mass of a hydrogen nucleus. Now, we can calculate the
moment of inertia:

I =
m

2
(0.074× 10−9)2. (A.4.4)

The energy of the lowest rotational mode can be found using the following
formula:

Erot =
ℏ2

2I
, (A.4.5)

where ℏ is the reduced Planck constant. To excite the lowest rotational
mode, we need to supply this energy in the form of thermal energy, which can
be expressed as:

kBTrot ≈ Erot, (A.4.6)

where kB is the Boltzmann constant. Solving for the temperature Trot, we
get:
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Trot ≈
ℏ2

2IkB
. (A.4.7)

Plugging in the values, we find that Trot ≈ 88.08 K.

(ii) To find the temperature needed to excite the lowest vibrational mode,
we first need to calculate the vibrational frequency ω of the hydrogen molecule
using the force constant k:

ω =

√
k

µ
. (A.4.8)

The energy of the lowest vibrational mode can be found using the following
formula:

Evib = ℏω. (A.4.9)

To excite the lowest vibrational mode, we need to supply this energy in the
form of thermal energy, which can be expressed as:

kBTvib ≈ Evib, (A.4.10)

where kB is the Boltzmann constant. Solving for the temperature Tvib, we
get:

Tvib ≈ ℏω
kB

. (A.4.11)

Plugging in the values, we find that Tvib ≈ 6365.96 K.
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A.5 5.
Given the initial and final pressures P1 and P2, the constant volume V , and the
molar heat capacity at constant volume CV = 5R

2 , we want to find the change
in internal energy ∆U of the air in the tyre.
Given PV = nRT ,
Let,
n = P1V

RT .
Assume process is isothermal.
∆U = ∆W = nRT ln

(
P2

P1

)
.

Substituting the given values

P1 = 270 kPa (A.5.1)
P2 = 300 kPa (A.5.2)
V = 5.7× 10−3 m3 (A.5.3)

CV =
5R

2
(A.5.4)

We convert to pascals by multiplying by 103,
Let T = 1K

∆U = ∆W =
270× 103 × 5.7× 10−3

8.314
T ln

(
300× 103

270× 103

)
(A.5.5)

= 185.24 × T × ln

(
300

270

)
≈ 19.5 J (A.5.6)

9



A.6 6.

ℏ = 1.054× 10−34 J s (A.6.1)
ω = 6× 106 rad s−1 (A.6.2)

kB = 1.381× 10−23 J/K (A.6.3)
n = 3 (A.6.4)

The expression for the temperature is:

T =
ℏω
(
n+ 1

2

)
kB

(A.6.5)

Substituting the given values, we get:

T =
(1.054× 10−34 J s)(6× 106 rad s−1)

(
3 + 1

2

)
1.381× 10−23 J/K (A.6.6)

=
(1.054× 10−34 J s)(6× 106 rad s−1)(3.5)

1.381× 10−23 J/K (A.6.7)

=
2.2091× 10−28 J
1.381× 10−23 J/K (A.6.8)

= 1.6× 104 K (A.6.9)
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A.7 7.
A.7.a (a)

Given:

• Solid angle subtended by the Sun, Ω = 7× 10−5 steradians,

• Temperature of the Sun, Ts = 5780 K,

• Emissivity of the satellite, ϵ ≈ 1,

We use the equation:

Tsat =

(
Ω

4πϵ
T 4
s

)1/4

(A.7.1)

Plugging in the given values, we get:

Tsat =

(
7× 10−5

4π × 1
× (5780)4

)1/4

(A.7.2)

= (7× 10−5 × 5.67× 10−8 × (5780)4/4π)1/4 (A.7.3)
≈ 285 K. (A.7.4)

Thus, the temperature of the satellite is approximately 285 K.

A.7.b (b)

To lower the temperature of the satellite, we need to choose a paint with an
emissivity that is high in the infrared region (where the satellite radiates most
of its energy) and low in the visible region (where the Sun emits most of its
energy). This will maximize the amount of heat the satellite radiates while
minimizing the amount it absorbs from the Sun.

A suitable curve of emissivity as a function of wavelength would be a curve
that has a low value in the visible region (approximately 400 − 700 nm) and
a high value in the infrared region (wavelengths greater than 700 nm). The
curve should have a sharp increase in emissivity starting at around 700 nm
and maintain a high value for longer wavelengths. This will ensure that the
paint reflects most of the solar radiation while efficiently emitting the satellite’s
thermal radiation.

In essence, we’re looking for a coating that can effectively act as a thermal
mirror in the visible spectrum and a thermal radiator in the infrared spectrum.
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Figure 1: A suitable curve of emissivity as a function of wavelength for the
paint.

In this sketch, the emissivity is low (around 0.1) for wavelengths in the visible
region, and then sharply increases to a high value (around 0.9) for wavelengths
in the infrared region. By using this paint, the satellite will absorb less solar
radiation in the visible range and emit more of its own thermal radiation in the
infrared range, thus lowering its temperature.
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B Section B

B.8 8.
B.8.a (a)

Consider an ideal gas with constant heat capacity CV . Recall that for an ideal
gas, the internal energy U is given by:

U =
3

2
nRT (B.8.1)

where n is the number of moles, R is the gas constant, and T is the temperature.
The energy density u is the internal energy per unit volume, so:

u =
U

V
=

3

2

nRT

V
(B.8.2)

From the ideal gas law, we have:

pV = nRT (B.8.3)

Dividing both sides by V , we get:

p =
nRT

V
(B.8.4)

Now we can express the energy density u in terms of pressure p:

u =
3

2
p (B.8.5)

The adiabatic index γ is defined as:

γ =
Cp

CV
(B.8.6)

For an ideal gas, the heat capacities are related by:

Cp − CV = R (B.8.7)

So we can express γ in terms of CV :

γ =
CV +R

CV
(B.8.8)

If the gas were not ideal, the relationship between the internal energy and the
temperature, as well as the ideal gas law, would be modified. This would affect
the expression for the energy density and the relationship between pressure and
energy density.
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B.8.b (b)

For a fluid of density ρ(r) in equilibrium in a gravitational field g, the force
balance (hydrostatic equilibrium) requires that the pressure gradient balance
the gravitational force acting on the fluid. This can be expressed as:

∇p = −ρ(r)g (B.8.9)

B.8.c (c)

The given integral condition is:∫ x2

x1

x3 df

dx
dx = −3

∫ x2

x1

x2 f dx (B.8.10)

This condition is satisfied when f(x) is an odd function, i.e., f(−x) = −f(x).
To show this, consider the substitution u = x3. Then, du = 3x2dx, and the
given condition becomes:∫ u(x2)

u(x1)

df

du
du = −

∫ u(x2)

u(x1)

f(u)du (B.8.11)

If f(u) is an odd function, the integrals on both sides of the equation will be
equal and opposite, satisfying the given condition.

B.8.d (d)

In a state of hydrostatic equilibrium, the pressure gradient is balanced by the
gravitational force. This can be expressed as:

dp

dr
= −GM(r)ρ(r)

r2
(B.8.12)

where G is the gravitational constant, M(r) is the mass enclosed within a radius
r, and ρ(r) is the density of the cloud at radius r.

The pressure must go to zero at the surface of the cloud (r = R), because
there is no overlying material to create a pressure gradient. This is a boundary
condition for the above differential equation.

The total thermal energy U of the cloud can be expressed as:

U =

∫ R

0

u 4π r2 dr (B.8.13)

where u is the energy density. For an ideal gas, u = 3
2p, so:

U =
3

2

∫ R

0

p 4π r2 dr (B.8.14)
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The total gravitational potential energy Ω of the cloud is given by:

Ω = −1

2

∫ R

0

GM(r)ρ(r)

r
4π r2 dr (B.8.15)

The factor of 1
2 comes from the fact that the gravitational potential energy

is shared between pairs of particles.
Using the equation of hydrostatic equilibrium, we can relate U and Ω:

3(γ − 1)U +Ω = 0 (B.8.16)

B.8.e (e)

The heat capacity at constant volume CV for a monoatomic ideal gas is given
by CV = 3

2Nk, where N is the number of particles and k is the Boltzmann
constant. The change in internal energy ∆U when heat Q is added or removed
is given by ∆U = Q. Since U = 3

2NkT , we have ∆U = 3
2Nk∆T . Setting these

equal gives:

Q =
3

2
Nk∆T (B.8.17)

Solving for ∆T , we get:

∆T =
2Q

3Nk
(B.8.18)

Since the cloud radiates away energy, Q is negative, so ∆T is also negative,
which means the cloud cools down.

The heat capacity of the cloud is given by C = Q
∆T , so:

C =
3

2
Nk (B.8.19)

If two such clouds are exchanging radiant heat, the hotter cloud will cool
down and the cooler cloud will heat up until they reach the same temperature.
This is due to the second law of thermodynamics, which states that heat flows
from hotter to cooler bodies.
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B.9 9.
B.9.a (a)

Let: u = xn−1 and dv = xe−αx2

dx.

In =

∫ ∞

0

xne−αx2

dx (B.9.1)

=

[
− 1

2α
xn−1e−αx2

]∞
0

+
n− 1

2α

∫ ∞

0

xn−2e−αx2

dx (B.9.2)

= 0 +
n− 1

2α
In−2, (B.9.3)

− 1
2αx

n−1e−αx2 tends to 0 as x → ∞ and at x = 0.
Multiplying both sides by 2α yields the desired result:

2αIn = (n− 1)In−2 (B.9.4)

can be applied to the velocity distribution function of the monatomic gas,

f(v⃗) = C exp(−α[v2x + v2y + v2z ]). (B.9.5)

Since we are dealing with three dimensions (vx, vy, and vz), the integral of
the velocity distribution function can be expressed as a triple integral over all
velocity space: ∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f(v⃗)dvxdvydvz = 1. (B.9.6)

Given the symmetry and independence of the velocity components, this can
be rewritten as: (∫ ∞

−∞
vne−αv2

dv

)3

= 1. (B.9.7)

With a substitution x = v2, we can relate this to our original integral In:

23/2
(∫ ∞

0

xn/2e−αxdx

)3

= 1, (B.9.8)

or equivalently,

23/2I3n/2 = 1. (B.9.9)

16



B.9.b (b)

We are given the velocity distribution function f(v) = C exp(−α[v2x + v2y + v2z ]).
The constant C is the normalization constant which can be determined by the
requirement that the total probability of finding the particle with any velocity
is 1:

1 =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f(v) dvxdvydvz (B.9.10)

= C

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
exp(−α[v2x + v2y + v2z ]) dvxdvydvz. (B.9.11)

This triple integral can be split into the product of three identical single
integrals due to the additivity property of the integral:

1 = C

[∫ ∞

−∞
exp(−αv2x) dvx

]3
. (B.9.12)

Each integral is of the form
∫∞
−∞ exp(−αv2i ) dvi =

√
π
α , which can be solved

using the Gaussian integral formula:

1 = C

(√
π

α

)3

, (B.9.13)

Solving for C, we find that

C =
(α
π

)3/2
. (B.9.14)

This gives the normalization constant C in terms of the parameter α.

α = π C2/3 (B.9.15)

B.9.c (c)

The distribution function of the magnitude of the velocity v = |v⃗| is the number
of states in the velocity space within the shell of thickness dv at the distance
v from the origin. In spherical coordinates, this volume is given by 4πv2dv.
Hence, the speed distribution function, f(v), is obtained by multiplying f(v⃗) by
the volume of this shell, and integrating over the angles:

f(v) = 4πv2f(v⃗) (B.9.16)
= 4πv2C exp(−αv2) (B.9.17)

= 4πv2
(α
π

)3/2
exp(−αv2). (B.9.18)
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By substituting α = πC2/3 from part (b), the distribution function simplifies
to:

f(v) = 4v2C exp(−πC2/3v2). (B.9.19)

function reaches its maximum at a certain speed vm which we can find by setting
the derivative of f(v) with respect to v equal to zero:

df(v)

dv
= 0 (B.9.20)

vm =
1√

πC2/3
(B.9.21)

For the sketch we have

Figure 2: Sketch

B.9.d (d)

⟨E⟩ =
∫ ∞

0

Ef(v)dv (B.9.22)

=

∫ ∞

0

1

2
mv2f(v)dv (B.9.23)

=

∫ ∞

0

1

2
mv24v2C exp(−πC2/3v2)dv. (B.9.24)

We can simplify this further by doing a change of variable x = πC2/3v2:

⟨E⟩ = 2mC

π3/2C

∫ ∞

0

x5/2 exp(−x)dx. (B.9.25)

18



This integral corresponds to a gamma function, specifically Γ( 72 ) =
3
4

√
π.

⟨E⟩ = 2mC

π3/2C
· 3
4

√
π (B.9.26)

=
3

2
mC (B.9.27)

=
3

2
m
(α
π

)3/2
(B.9.28)

=
3

2
m

(
kBT

m

)3/2

(B.9.29)

=
3

2
kBT (B.9.30)

⟨E⟩ =3

2
kBT (∴)

B.9.e (e)

The Maxwell-Boltzmann distribution also governs the speeds of gas particles
during effusion, and hence is applicable to our case. The approach will involve
integrating this distribution over the speeds to find the average kinetic energy of
the gas particles that effuse through the hole, and hence their final temperature.

Now, let’s derive the final temperatures for the monatomic and diatomic
gases.

For a gas at equilibrium with temperature T , the Maxwell-Boltzmann dis-
tribution function for the speed of a particle is given by:

f(v) = 4π

(
m

2πkBT

)3/2

v2e
− mv2

2kBT , (B.9.31)

where m is the mass of the particle, kB is Boltzmann’s constant, T is the
temperature, and v is the speed.

We found in part (b) that the speed distribution of the effusing particles is
given by:

fe(v) = f(v)v = 4π

(
m

2πkBT

)3/2

v3e
− mv2

2kBT . (B.9.32)

The average kinetic energy of the effusing particles can be calculated by
integrating the product of this function and the kinetic energy 1

2mv2 over all
speeds:

⟨E⟩ =
∫ ∞

0

1

2
mv2fe(v)dv = 2π

(
m

2πkBT

)3/2 ∫ ∞

0

v5e
− mv2

2kBT dv. (B.9.33)

The integral can be solved by substituting u = mv2

2kBT , which leads to v2 =
2kBT
m u and vdv = kBT

m du. The limits of integration remain the same because
when v = 0 we have u = 0, and when v = ∞ we have u = ∞. Therefore:
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⟨E⟩ = 2π

(
m

2πkBT

)3/2
2k3BT

3

m3

∫ ∞

0

u2e−udu =
3

2
kBT, (B.9.34)

where the integral of u2e−u from 0 to ∞ is equal to 2
The final temperature Tf of the effusing particles can be found from the

equation ⟨E⟩ = 3
2kBTf , which gives Tf = T .

Therefore, for both the monatomic and diatomic gases, the final temperature
of the gas particles that have effused into the box is the same as the initial
temperature of the gas in the container, assuming that the effusion process is
adiabatic and the hole’s radius is larger than the mean free path of the gas
particles.
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B.10 10
B.10.a (a)

We are given a system of independent paramagnetic atoms each with a dipole
moment µ that can be in one of two states: aligned with the magnetic field (µB)
or against the magnetic field (−µB). We can calculate the relative probabilities
of these states using the Boltzmann factor.

The partition function for each atom is then:

Z = eβµB + e−βµB , (B.10.1)

where β = 1
kBT , kB is the Boltzmann constant, T is the temperature and B is

the magnetic field strength.
The magnetization per atom m (average dipole moment) can be obtained

by taking the derivative of the free energy F = −kBT ln(Z) with respect to the
magnetic field strength:

m =
∂F

∂B
= −µ tanh(βµB), (B.10.2)

The magnetization per unit volume M is simply given by n ·m, where n is
the number of atoms per unit volume. Hence,

M = −nµ tanh(βµB). (B.10.3)

We can then write the susceptibility χ, which is defined as χ = ∂M
∂B , and

after differentiating the above expression with respect to B, we get:

χ = nµ2βsech2(βµB). (B.10.4)

In the limit of small B (or high temperatures), sech2(x) ≈ 1, hence the
susceptibility simplifies to:

χ = nµ2β. (B.10.5)

B.10.b (b)

Given that each atom can be in one of two states (aligned or anti-aligned with
the field), we can find the total number of ways to arrange all the atoms (the
number of microstates W ) using the binomial coefficient:

W =
N !

N+!N−!
(B.10.6)

We then relate this to entropy via Boltzmann’s equation:

S = kB lnW (B.10.7)
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To express S in terms of m, we first express N+ and N− in terms of the
probabilities p+ and p−, respectively, which we have from part (a). Specifically,
N+ = Np+ and N− = Np−, where N is the total number of atoms.

Next, we note that the total dipole moment per unit volume m is related to
N+ and N− by:

N+ −N− = N tanh(βµB) =
m

µ
(B.10.8)

Substituting this into our equation for W , we get:

W =
N !(

N
2 + m

2µ

)
!
(

N
2 − m

2µ

)
!

(B.10.9)

Finally, we use Stirling’s approximation to simplify the factorial terms, giving
us an expression for S in terms of m:

S ≈ kB

[
N lnN −

(
N

2
+

m

2µ

)
ln

(
N

2
+

m

2µ

)
−
(
N

2
− m

2µ

)
ln

(
N

2
− m

2µ

)]
(B.10.10)

This is the relationship between entropy S and the total dipole moment m
of the solid.

B.10.c (c)

At very low temperatures (T → 0), the magnetic dipoles align with the magnetic
field to minimize their energy. This results in a low-entropy, ordered state. Any
small increase in temperature introduces significant disorder into the system,
and consequently, the heat capacity is high at very low temperatures.
At very high temperatures (T → ∞), the magnetic dipoles are randomly ori-
ented as the thermal energy surpasses the energy of the magnetic field. This
creates a high-entropy, disordered state. Therefore, the heat capacity is low at
high temperatures since changes in temperature don’t significantly affect the
system’s order.
There’s a peak in the heat capacity at some intermediate temperature where
the system transitions from the low-temperature ordered state to the high-
temperature disordered state.
The integral

∫∞
0

C
T dT is related to the total entropy change in the system when

it is heated from absolute zero to infinite temperature. According to the third
law of thermodynamics and Debye’s law, in a paramagnetic system, this total
change is NkB ln 2 (where N is the number of dipoles and kB is the Boltzmann
constant). Hence,

∫∞
0

C
T dT = NkB ln 2
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Figure 3: Heat capacity C as a function of temperature

B.10.d (d)

In an adiabatic process, entropy remains constant. Therefore, we can write
S(B1, T1) = S(B2, T2) where S is the entropy, B is the magnetic field, and T is
the temperature.From our earlier computations, we have a relationship between
entropy S and magnetization M , which is proportional to the dipole moment
per unit volume m. The dipoles in the system would try to align with the new
field direction when the magnetic field is reduced adiabatically. This is due to
the fact that the aligned state is energetically favourable compared to the anti-
aligned state. Now, the entropy of the system remains constant in an adiabatic
process. By applying this condition and rearranging, we can compute the final
temperature T2.

Given S(B1, T1) = S(B2, T2), we have

NkB

[
1

2
ln (2 cosh (β1µB1))

]
= NkB

[
1

2
ln (2 cosh (β2µB2))

]
(B.10.11)

Here, β1 = 1
kBT1

, β2 = 1
kBT2

, B1 = 1 T, and B2 = 0.3 T.
We can cancel out the common factors and simplify to get:

ln

(
2 cosh

(
µB1

T1

))
= ln

(
2 cosh

(
µB2

T2

))
(B.10.12)

Therefore,
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µB1

T1
=

µB2

T2
(B.10.13)

We can solve this equation to get T2, the final temperature:

T2 =
B2

B1
T1 =

0.3

1
· 1K = 0.3K (B.10.14)

Thus, when the magnetic field is reduced adiabatically from 1T to 0.3T , the
final temperature of the solid will be 0.3K.

B.10.e (e)

Let’s consider the case of a container of gas at temperature T which is streaming
particles into a vacuum through a hole whose radius is small compared to the
mean free path of the particles. After a short time, a box is opened which
catches some of these particles, and we want to find the final temperature of
the gas trapped in this box.

Given that the hole is small compared to the mean free path, we can say
that only the particles with a component of velocity directed towards the hole
can escape the container. In the case of a Maxwell-Boltzmann distribution of
velocities, this corresponds to the most probable speed, vp =

√
2kBT
m , where kB

is Boltzmann’s constant, T is the temperature of the gas, and m is the mass of
the gas particles.

(i) For a monatomic gas, each atom has 3 degrees of freedom, so the total
energy per particle is 3

2kBT . After the gas escapes into the vacuum, the average
energy per particle does not change, as it is an adiabatic process. The final
temperature Tf of the gas trapped in the box can be found from the relation
3
2kBT = 3

2kBTf , so Tf = T .

(ii) For a diatomic gas in which rotation is fully thermally excited and vibra-
tion is not excited, each molecule has 5 degrees of freedom, so the total energy
per molecule is 5

2kBT . Similarly, the average energy per molecule does not
change when the gas escapes into the vacuum. The final temperature Tf of
the gas trapped in the box can be found from the relation 5

2kBT = 5
2kBTf , so

Tf = T .
In a similar experiment with a hole of radius larger than the mean free path,

we would expect the final temperature of the gas trapped in the box to be lower.
This is because all particles, regardless of their speed, would have a chance to
escape, so the average energy of the escaping particles would be lower.
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